Aims and Scope

Annals of Rehabilitation Medicine (ARM) is the official journal of the Korean Academy of Rehabilitation Medicine. It is an international, peer-reviewed open access journal, which aims to be a global leader in sharing up-to-date knowledge dedicated to the advancement of care and enhancing the function and quality of life of persons with various disabilities and chronic illnesses. As the official journal of one of the largest societies of rehabilitation medicine in Asia and Oceania, nearly 8,000 physiatrists receive this journal every two months as a member benefit. This journal is endorsed by the International Society of Physical and Rehabilitation Medicine (ISPRM) and the Asia-Oceanian Society of Physical and Rehabilitation Medicine (AOSPRM). International members comprise approximately half the editorial board and conduct peer-review of submitted manuscripts.

The journal encompasses all aspects of physical medicine and rehabilitation, including clinical practice, experimental and applied research, and education. Research areas covered by this journal include rehabilitation of brain disorders and spinal cord injury; electrodiagnosis; musculoskeletal disorders and pain; pediatric, geriatric, cardiopulmonary, sports, cancer, cognitive, and robotic rehabilitation; neuroprostheses; neuroimaging; orthotics and prosthetics; physical modalities; clinical trials; quality of life issues; and basic research, as well as other emerging fields in rehabilitation medicine.

General Information

Annals of Rehabilitation Medicine is published in English bi-monthly on the last days of February, April, June, August, October, and December. Publication type includes original research, reviews, and other types of articles that reflect the depth and breadth of this specialty. Review board consists of members in 13 different countries. Articles are welcome for submission from all over the world. Full text is available from: http://www.e-arm.org. All or part of the journal articles is indexed/tracked/coversd by SCOPUS, EBSCO, PubMed Central/PubMed, KoreaMed, KoMCI, DOAJ/Crossref, Google Scholar, and Web of Science. This journal was supported by the Korean Federation of Science and Technology Societies (KOFTS). Grant funded by the Korean Government. For subscription, submission, and all other information, visit our website (http://www.e-arm.org). To subscribe to this journal or renew your current subscription, please complete the subscription order form and send it to us through fax (+82-2-6072-5244), mail or e-mail (edit@e-arm.org; edit.karm@gmail.com).

Open Access

Annals of Rehabilitation Medicine is available freely in electronic form at http://www.e-arm.org

Annals of Rehabilitation Medicine is an Open Access journal. All articles are distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-nc/4.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.

Copyright ©2023 The Korean Academy of Rehabilitation Medicine.

Contacting the Annals of Rehabilitation Medicine

All manuscripts must be submitted online through the ARM e-submission system at http://e-arm.org. Items pertaining to manuscripts submitted for publication, as well as letters or other forms of communication regarding the editorial management of the journal, should be sent to:

Editor-in-Chief

Byung-Mo Oh, MD, PhD (Seoul National University, Korea)

Associate Editors

Han Gil Seo, MD, PhD (Seoul National University, Korea)
Hyun Iee Shin, MD (Chung-Ang University, Korea)
Siang Hwa Ko, MD, PhD (Pusan National University, Korea)

Editorial Office

Department of Rehabilitation Medicine, Seoul National University Hospital
103 Daehak-ro, Jongno-gu, Seoul, Korea
Tel +82-10-8678-2671 Fax +82-2-6072-5244 E-mail edit@e-arm.org; edit.karm@gmail.com
Editorial Board

Editor-in-Chief
Byung-Mo Oh Seoul National University, Korea

Associate Editors
Han Gil Seo Seoul National University, Korea
Hyun-Iee Shin Chung-Ang University, Korea
Sung Hwa Ko Pusan National University, Korea

Section Editors
Neurological Rehabilitation
Sung-Rae Cho Yonsei University, Korea

Pain and Musculoskeletal Rehabilitation
Sun Jae Won The Catholic University of Korea, Korea

Electrodiagnosis and Neuromuscular Diseases
Dong Hwee Kim Korea University, Korea

Pediatric Rehabilitation
Jeong-Yi Kwon Sungkyunkwan University, Korea

Editorial Board Members
Moon Suk Bang Seoul National University, Korea
Min Cheol Chang Yeungnam University, Korea
Won Hyuk Chang Sungkyunkwan University, Korea
Ian Cameron University of Sydney, Australia
Alberto Esquenazi MossRehab, USA
Michael Fredericson Stanford University, USA
Walter Frontera University of Puerto Rico School of Medicine, Puerto Rico
Jae-Young Han Chonnam National University, Korea
Bo Young Hong The Catholic University of Korea, Korea
Shin-Ichi Izumi Tohoku University, Japan
Se Hee Jung Seoul National University, Korea
Na Young Kim Yonsei University, Korea
Jung Yoon Kim Ewha Womans University, Korea
Myoung-Hwan Ko Chonbuk National University, Korea
Ho Jun Lee Dongguk University, Korea
Jong Hwa Lee Dong-A University, Korea
Sang Yoon Lee Seoul National University, Korea

Geriatric Rehabilitation
Seung Hak Lee University of Ulsan, Korea
Shi-Uk Lee Seoul National University, Korea
Jan Lexell Lund University, Sweden
Jianan Li Nanjing Medical University, China
Leonard S W Li University of Hong Kong, China
Peter Lim Baylor College of Medicine in Houston, USA
Reynaldo Rey-Matias St Luke’s Medical Center, Philippines
William Micheo University of Puerto Rico, Puerto Rico
Masahiko Mukaino Hokkaido University Hospital, Japan
Min-Kyun Oh Gyeongsang National University, Korea
Chul-Hyun Park Sungkyunkwan University, Korea
Jae Hyeon Park Hanyang University, Korea
Mooyeon Oh-Park Rutgers New Jersey Medical School, USA
Mohamad Yatim Saari Serdang Hospital, Malaysia
Joon-Ho Shin National Rehabilitation Center, Korea
Gerold Stucki University of Lucerne, Switzerland
Simon Fuk Tan Tang Chang Gung University, Taiwan
Shaun Xianglu Xiong St George’s Hospital, New Zealand
Jin A Yoon Pusan National University, Korea

Statistical Editor
Joongryub Lee Seoul National University, Korea

Ethics Editor
Ock-Joo Kim Seoul National University, Korea

Manuscript Editors
Yeonjin Lee Korean Academy of Rehabilitation Medicine, Korea
Munjue Lee MEDrang Inc., Korea

Annals of Rehabilitation Medicine

This journal was supported by the Korean Federation of Science and Technology Societies Grant funded by the Korean Government (Ministry of Education).
Clinical Practice Guidelines for Oropharyngeal Dysphagia

A list of authors and their affiliations appears at the end of the paper

Objective: Dysphagia is a common clinical condition characterized by difficulty in swallowing. It is sub-classified into oropharyngeal dysphagia, which refers to problems in the mouth and pharynx, and esophageal dysphagia, which refers to problems in the esophageal body and esophagogastric junction. Dysphagia can have a significant negative impact on one’s physical health and quality of life as its severity increases. Therefore, proper assessment and management of dysphagia are critical for improving swallowing function and preventing complications. Thus a guideline was developed to provide evidence-based recommendations for assessment and management in patients with dysphagia.

Methods: Nineteen key questions on dysphagia were developed. These questions dealt with various aspects of problems related to dysphagia, including assessment, management, and complications. A literature search for relevant articles was conducted using Pubmed, Embase, the Cochrane Library, and one domestic database of KoreaMed, until April 2021. The level of evidence and recommendation grade were established according to the Grading of Recommendation Assessment, Development and Evaluation methodology.

Results: Early screening and assessment of videofluoroscopic swallowing were recommended for assessing the presence of dysphagia. Therapeutic methods, such as tongue and pharyngeal muscle strengthening exercises and neuromuscular electrical stimulation with swallowing therapy, were effective in improving swallowing function and quality of life in patients with dysphagia. Nutritional intervention and an oral care program were also recommended.

Conclusion: This guideline presents recommendations for the assessment and management of patients with oropharyngeal dysphagia, including rehabilitative strategies.

Keywords: Deglutition disorders, Rehabilitation, Diagnosis, Treatment, Therapeutics

INTRODUCTION

Dysphagia is a common clinical condition characterized by difficulty in swallowing. It is sub-classified into oropharyngeal dysphagia, which refers to problems in the mouth and pharynx, and esophageal dysphagia, which refers to problems in the esophageal body and esophagogastric junction [1]. Oropharyngeal dysphagia is characterized by difficulty in initiating a swallow or passing food through the mouth or throat [2], whereas esophageal dysphagia accompanies structural or inflammatory abnormalities or motility disorders [3].

Dysphagia is associated with an acquired health condition, such as stroke, Parkinson’s disease, or motor neuron disease, as well as developmental disabilities. The prevalence of dysphagia is estimated to be 8% of the world’s population, and its prevalence increases in the older adult population [4]. The prevalence of dysphagia in older people dwelling in communities is approximately 15% and approximately 30% in hospitalized patients [1]. It occurs most commonly in old patients with neurological disorders and dementia, with a prevalence of 64% and 80%, re-
Dysphagia can have a significant negative impact on one’s physical health and quality of life as its severity increases [6]. If dysphagia is not properly evaluated and timely treated, it may worsen the quality of life and cause serious complications, such as dehydration, malnutrition, and aspiration pneumonia. Importantly, oropharyngeal dysphagia should be identified promptly considering the risk of aspiration. Various interventions such modifying food textures, positioning modification, or rehabilitative and compensatory strategies are designed to improve swallowing efficiency and reduce the risk of complications in patients with dysphagia [7].

Purpose of clinical practice guidelines

The purpose of this clinical practice guideline (CPG) was to provide a guideline supported by scientific evidence for physicians and other healthcare professions who diagnose and treat patients with symptoms of dysphagia. This CPG is aimed to assist in decision-making for appropriate treatment options to improve the clinical outcome of patients with dysphagia and reduce extravagant costs to patients and the overall health care system.

Scope of CPGs

Assessment and management of dysphagia are mainly addressed in this CPG. Patients with progressive neurological disease and under 18 years of age were excluded from the scope of this CPG. This guideline does not aim to limit physicians’ medical practices and is not used to evaluate the quality of their practices.

METHODS

CPG development group

The development group involved a development committee and an advisory committee, including three methodology experts. The development committee members consisted of 45 physicians (25 physiatrists, 15 otolaryngologists, 2 gastroenterologists, and 3 dentists), 2 nursing staff, 3 nutritionists, 3 occupational therapists, and 2 language therapists.

For each key question (KQ), 55 development committee members determined the level of evidence and recommendation level.

KQs

This CPG consists of four categories: (1) assessment, (2) treatment, (3) nutritional management, and (4) complications and others. KQ was determined based on the Population Intervention Comparator Outcome (PICO) framework. According to the PICO strategy, adult patients of the population group who have symptoms or diagnosis of oropharyngeal dysphagia were included in this guideline. The number of KQs was determined by the number of interventions. The majority of outcomes focused mainly on improvement of dysphagia. If necessary, KQs were further divided into sub-KQs. Finally, a total of 19 KQs were formulated for this guideline.

Search strategy

A literature search was conducted for relevant articles using PubMed, Embase, the Cochrane Library, and one domestic database of KoreaMed, until April 2021. After establishing a highly sensitive strategy in combination with the natural language, the MeSH term was also used for PubMed and Cochrane Library, and the Emtree term was used for Embase (Supplementary Data 1).

The search results were collated in EndNote. For each KQ, two independent reviewers excluded articles that did not meet the inclusion criteria of this CPG after reading titles and abstracts. Furthermore, full-text assessments were followed to reject those that did not fulfill the inclusion criteria. Articles that included patients with progressive neurological diseases (e.g., Parkinson’s disease or dementia) and patients who were under 18 years of age were excluded. We also included articles written in languages other than English or Korean, articles that exist only in abstract form, case reports, technical reports, and animal studies. Study screening and data extraction were independently performed by two reviewers. The reviewers attempted to resolve any disagreement by consensus. If necessary, the opinion of a third reviewer was put into consideration to resolve the disagreement.

Quality assessment was performed on selected articles. The bias assessment was conducted using Cochrane risk-of-bias 2.0 for randomized controlled trials (RCTs) and the risk-of-bias assessment tool for non-randomized studies for non-RCTs [8,9]. The methodological quality of the systematic reviews (SRs) was evaluated using AMSTAR 1.0—a measurement tool to assess the methodological quality of SRs [10] (Supplementary Data 2). The level of evidence and recommendation grade were established according to the Grading of Recommendation...
Assessment, Development and Evaluation (GRADE) methodology [11]. The level of evidence was evaluated by assessing the degree of bias, consistency, directness, accuracy, and publication bias in the RCTs, non-RCTs, and SRs. The level of evidence for each KQ was based on the GRADE methodology as “high,” “medium,” “low,” and “very low” (Table 1). The level of recommendation was determined according to a modified GRADE methodology divided into four levels (Table 2). Several factors were considered, including the level of evidence, balance of benefits and harms, values and preferences, obstacles and facilitating factors, resource and cost, and clinical applicability. The KQs that could not be further developed due to poor existing research were represented as expert consensus.

For each KQ, at least two members of the development group participated in formulating and reviewing the draft recommendations. The working members continued discussions to reach consensus, and revisions were made there after in accordance with the opinions of the advisory committee. The recommendations were also revised through a review process via e-mail and a wired meeting with experts in the relevant field, and a formal consensus was achieved. The level of evidence and recommendations for 19 KQs were evaluated, and the content of the recommendations and the recommendation grade was adjusted through in-depth discussion. The degree of consent for each committee member was selected from one (non-acceptance) to nine (acceptance) on a nine-point scale. If the score was ≥7, consent was considered to be present. If at least 75% of the committee members agreed to the final version of the recommendations, it was deemed to have reached a consensus. Finally, the final version of the 19 recommendations was accepted. This guideline will be revised every 5 years, when there is solid evidence that it can affect the management and treatment of patients with oropharyngeal dysphagia.

RESULTS

Summary of recommendations

1. Assessment of oropharyngeal dysphagia
 - **KQ 1. Early screening**
 - A. Evidence level: high
 - B. Grade of recommendation: strong
 - **KQ 2. Standardized screening test**
 - A. Evidence level: not applicable
 - B. Grade of recommendation: expert consensus
 - **KQ 3. Videofluoroscopic swallowing study (VFSS) vs. clinical evaluation**
 - A. Evidence level: moderate
 - B. Grade of recommendation: strong

Table 1. Grading of Recommendations Assessment, Development and Evaluation quality level of evidence and meaning

<table>
<thead>
<tr>
<th>Quality level</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>High</td>
<td>We are confident that the estimate of the effect is close to the actual effect</td>
</tr>
<tr>
<td>Moderate</td>
<td>The estimates of the effect appear to be close to the actual effect but may vary considerably</td>
</tr>
<tr>
<td>Low</td>
<td>The confidence in the estimate of the effect is limited. The actual effect may differ significantly from the estimate of the effect</td>
</tr>
<tr>
<td>Very low</td>
<td>There is little confidence in the estimate of the effect. The actual effect will differ significantly from the estimate of the effect</td>
</tr>
</tbody>
</table>

Table 2. Grading of recommendations

<table>
<thead>
<tr>
<th>Strength of recommendations</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Strong recommendation</td>
<td>The intervention/diagnostic test can be strongly recommended in most clinical practice, considering greater benefit than harm, evidence level, value and preference, and resources</td>
</tr>
<tr>
<td>Conditional recommendation</td>
<td>The intervention/diagnostic test can be conditionally recommended in clinical practice considering the balance of benefit and harm, evidence level, value and preference, and resources</td>
</tr>
<tr>
<td>Against recommendation</td>
<td>The harm caused by the intervention/diagnostic test maybe greater than its benefits. Moreover, considering the evidence level, value and preference, and resources, the intervention should not be recommended</td>
</tr>
<tr>
<td>Inconclusive</td>
<td>It is not possible to determine the strength and direction of recommendation because of a very low or insufficient evidence level, uncertain or variable balance of benefit and harm, value and preference, and resources</td>
</tr>
<tr>
<td>Expert consensus*[a]</td>
<td>Although clinical evidence is insufficient, it is recommended to be used in accordance with clinical experience and expert consensus when considering the benefits and risks of the treatment, the level of evidence, values and preferences, and resources</td>
</tr>
</tbody>
</table>

Each statement is shown as a combination of the strength of recommendations and level of evidence. *[a]In the case of a consensus statement by an expert opinion, the recommendation grade and level of evidence are not indicated.
KQ 4. VFSS vs. fiberoptic endoscopic examination of swallowing (FEES)
 A. Evidence level: inconclusive
 B. Grade of recommendation: inconclusive

2. Treatment for oropharyngeal dysphagia
KQ 5. Oropharyngeal sensory stimulation
 A. Evidence level: low
 B. Grade of recommendation: conditional
KQ 6. Exercises
 KQ 6.1. Tongue and pharyngeal muscle strengthening exercise
 A. Evidence level: moderate
 B. Grade of recommendation: strong
 KQ 6.2. Expiratory muscle strength training (EMST)
 A. Evidence level: low
 B. Grade of recommendation: conditional
KQ 7. Compensatory swallowing technique
 A. Evidence level: conditional
 B. Grade of recommendation: very low
KQ 8. Neuromuscular electrical stimulation (NMES)
 KQ 8.1. Swallowing therapy with or without NMES in non-progressive neurological disease
 A. Evidence level: moderate
 B. Grade of recommendation: strong
 KQ 8.2. Swallowing therapy with or without NMES in head and neck cancer
 A. Evidence level: low
 B. Grade of recommendation: conditional
 KQ 8.3. Pharyngeal electrical stimulation (PES) in non-progressive neurological disease
 A. Evidence level: low
 B. Grade of recommendation: conditional against
KQ 9. Stimulation of the transient receptor potential (TRP) channel with drugs
 A. Evidence level: moderate
 B. Grade of recommendation: conditional
KQ 10. Biofeedback training
 A. Evidence level: low
 B. Grade of recommendation: conditional
KQ 11. Specific treatment for cricopharyngeal (CP) dysfunction
 KQ 11.1. CP botulinum toxin injection
 A. Evidence level: low
 B. Grade of recommendation: conditional
KQ 11.2. CP myotomy
 A. Evidence level: not applicable
 B. Grade of recommendation: expert consensus
KQ 11.3. Balloon dilatation
 A. Evidence level: moderate
 B. Grade of recommendation: conditional
KQ 12. Swallowing education
 A. Evidence level: very low
 B. Grade of recommendation: conditional
KQ 13. Noninvasive brain stimulation
 KQ 13.1. Transcranial direct current electrical stimulation (tDCS)
 A. Evidence level: low
 B. Grade of recommendation: conditional
 KQ 13.2. Repetitive transcranial magnetic stimulation (rTMS)
 A. Evidence level: very low
 B. Grade of recommendation: conditional

3. Nutrition for oropharyngeal dysphagia
KQ 14. Tube feeding in patients with suspected long-term dysphagia
 A. Evidence level: very low
 B. Grade of recommendation: conditional
KQ 15. Modifying food textures
 A. Evidence level: very low
 B. Grade of recommendation: conditional
KQ 16. Nutritional intervention
 A. Evidence level: moderate
 B. Grade of recommendation: strong

4. Complications and others
KQ 17. Incidence and mortality rates of aspiration pneumonia
 A. Evidence level: high
 B. Grade of recommendation: strong
KQ 18. The effect of oral care program
 A. Evidence level: moderate
 B. Grade of recommendation: strong
KQ 19. The effect of multidisciplinary team approach
 A. Evidence level: low
 B. Grade of recommendation: conditional

Assessment of oropharyngeal dysphagia

KQ 1. Is early screening effective in improving the prognosis in patients with suspected oropharyngeal dysphagia?
Dysphagia is a medical condition that increases the risk of various complications, such as dehydration, malnutrition, aspiration pneumonia, and airway obstruction, which can lead to serious disability or even death [12-14]. Various methods have been used to screen patients with dysphagia, and it is important to investigate whether early screening tools for dysphagia are effective in improving prognosis and preventing complications that can occur due to dysphagia.

One RCT conducted by Schmidt Leuenberger et al. [12] reported that the incidence of pneumonia decreased in patients who received a clinical assessment of dysphagia (early screening) after pulmonary resection. Ten retrospective studies, including patients with stroke, post extubation dysphagia in an intensive care unit (ICU), and traumatic cervical injuries, showed that respiratory complications were significantly reduced after the early screening of dysphagia [12-21]. Considering that the above studies showed consistent results, early screening is recommended in patients with suspected oropharyngeal dysphagia to reduce the occurrence of pneumonia. If patients with oropharyngeal dysphagia are screened early and are provided with appropriate treatment as early as possible, serious complications, such as pneumonia, can be prevented.

Recommendation
Early screening is strongly recommended in patients with suspected oropharyngeal dysphagia to reduce the occurrence of pneumonia with high levels of evidence.

KQ 2. Is the standardized screening test more effective for the diagnosis of dysphagia than a single screening test?

If screening and appropriate treatments for dysphagia are provided as early as possible, the occurrence of complications related to the disease can be reduced [22]. Various screening tests for dysphagia have been developed and used in clinical practice. Single screening tests, such as the 3-oz water swallow test or the volume-viscosity swallow test, are used, where food is swallowed directly to check the presence of aspiration by coughing, voice change, and change in oxygen saturation [23]. Standardized screening tests, such as the Burke dysphagia screening test (BDST), Gugging Swallowing Screening Test (GUSS), Standardized Swallowing Assessment (SSA), Toronto Bedside Swallowing Screening Test (TOR-BSST), and Clinical Functional Scale for Dysphagia, use a clinical scale by combining various clinical items [24-26].

Shin et al. [23] compared the screening abilities of the single screening test (3-oz water test) and standardized screening tools (GUSS, BDST, and SSA) based on the VFSS findings in patients with stroke. The results showed that there was no significant difference in the screening ability of GUSS compared to other screening tests. Lopes et al. [27] also compared the water test and GUSS and reported that there were no differences in the occurrence of stroke-associated pneumonia, mortality rate, ICU admission rate, and functional status between the two groups. Both studies reported that there was no difference in the accuracy of diagnosis or the occurrence of complications between standardized and single screening tests. However, a standardized screening test tool can evaluate a patient’s swallowing function without directly swallowing food. Therefore, for high-risk patients who cannot swallow their saliva properly, a standardized screening test seems safer than a single screening test that forces them to swallow water.

Recommendation
A standardized screening test may be considered to diagnose dysphagia in patients with suspected oropharyngeal dysphagia (expert consensus).

KQ 3. Is VFSS more effective than clinical evaluation in diagnosing oropharyngeal dysphagia?

Oropharyngeal dysphagia can be evaluated using various clinical assessment tools that can be performed at the bedside, as well as more comprehensive diagnostic tests, such as VFSS, can be applied. VFSS is considered a gold-standard evaluation tool for dysphagia, because it can visualize a series of swallowing processes occurring in the oral, pharyngeal, and esophageal phases [28].

If VFSS is performed in patients with oropharyngeal dysphagia, the presence of dysphagia can be detected more accurately than during a clinical evaluation. Two SRs [29,30] and four studies [31-34] that compared the effectiveness of clinical evaluation and VFSS were identified. Both SRs that included patients with stroke showed that no statistically significant differences were found between clinical evaluation and VFSS in predicting the occurrence of aspiration pneumonia [29,30]. Other studies recommended that VFSS is cost-effective and superior when compared to a clinical bedside swallowing evaluation [31-34]. Therefore, clinical evaluation can be useful as an early screening test, and VFSS can be additionally performed to accurately diagnose the presence of dysphagia.
Recommendation
VFSS is strongly recommended for diagnosis of dysphagia with moderate levels of evidence.

KQ 4. Is FEES more effective than VFSS for the diagnosis of dysphagia?

It is necessary to diagnose patients with oropharyngeal dysphagia accurately in order to prevent detrimental complications, such as aspiration pneumonia, and to provide sufficient nutrition as early as possible. In addition, a diagnostic test for dysphagia is necessary to evaluate the recovery of swallowing function before and after treatment.

Diagnostic tests for dysphagia include bedside screening, VFSS, and FESS. VFSS is widely used as a standard diagnostic tool for oropharyngeal dysphagia, and FEES is applied to visualize the swallowing function; it can easily be performed repeatedly, even while lying down. Recently, FEES has been frequently performed to diagnose oropharyngeal dysphagia, and many studies on its usefulness have been reported.

One RCT conducted by Aviv [35] compared the effectiveness of VFSS and FESS in 126 patients with dysphagia. The results showed that there were no statistically significant differences in determining the prevalence of aspiration pneumonia between patients who received FEES and VFSS. A study conducted by Wu et al. [36] reported that FESS was more sensitive in detecting penetration, aspiration, pharyngeal retention, and cough reflex, while Fattori et al. [37] recommended that FESS was useful in visualizing pharyngeal residue. FEES showed superior results in observing airway penetration and pharyngeal residue than VFSS [38,39].

Similar levels of safety and efficacy have been observed between FEES and VFSS in patients with dysphagia. There is no radiation exposure, and it can be easily inspected even in medical institutions that do not have fluoroscopy equipment. The endoscopic swallowing test has a high diagnostic benefit since laryngeal movement can be detected during actual swallowing when dysphagia is suspected. In addition, it has the advantage of being performed repeatedly in various places, and there are no significant complications nor patient discomfort during the procedure. However, it is difficult to observe the whole swallowing process using FEES. The phases of swallowing cannot be assessed, especially the oral phase.

Recommendation
There is insufficient evidence to conclude whether FEES is more effective than VFSS. The two test methods can be performed complementary to each other.

KQ 5. Is oropharyngeal sensory stimulation therapy effective in improving swallowing function and quality of life?

Sensory stimulation therapy is believed to be a potential strategy for treating dysphagia as it activates the peripheral sensory nerves in the larynx and the pharynx to protect the airway from aspiration. It has been reported that the use of NMES can improve swallowing in patients with dysphagia by stimulating the afferent nerves and increasing the sensory input to the central nervous system [40].

A RCT conducted by Maeda et al. [41] showed that 20 patients with oropharyngeal dysphagia who received sensory stimulation showed improvement in oral nutritional intake and functional oral intake scale (FOIS). Zhang et al. [42] also conducted a RCT and compared the effectiveness of the traditional swallowing therapy, sensory approach (NMES on the sensory input) combined with traditional swallowing therapy, and motor approach (NMES on the motor muscle) combined with traditional swallowing therapy. All the groups showed improvement in swallowing function and quality of life after 4 weeks of treatment, but the sensory approach combined with traditional swallowing therapy showed a statistically significant improvement compared to the other groups [42]. Another RCT performed by Rofes et al. [43] showed that after 10 days of treatment with sensory or motor surface electrical stimulation, 20 patients with chronic post stroke dysphagia (10 sensory vs. 10 motor) showed improvement in swallowing function after treatment compared to that before treatment. These studies suggest that oropharyngeal sensory stimulation therapy in patients with oropharyngeal dysphagia may contribute to an improvement in swallowing function and an increase in quality of life.

Recommendation
Oropharyngeal sensory stimulation therapy is recommended in patients with oropharyngeal dysphagia to improve swallowing function and improve quality of life.

KQ 6.1. Are tongue and pharyngeal muscle strengthening exercises effective in improving swallowing function and quality of life, reducing the incidence of pneumonia, and improving quality of life?
Tongue and pharyngeal muscle strengthening exercises are one of the treatment methods for dysphagia. Strengthening exercises are often applied for better lingual and pharyngeal strength and improvement in swallowing ability [44]. These exercises aimed to increase the diameter of the upper esophageal sphincter (UES) opening and decrease post-deglutitive aspiration and dysphagic symptoms [45].

Twelve RCTs investigated whether strengthening exercises for the tongue and laryngeal muscles were effective in improving the swallowing function and reducing the incidence of aspiration pneumonia compared to the control group. Three and eight RCTs on patients with brain lesions and head and neck cancer, respectively, were found. These studies applied rehabilitative techniques, such as head lift exercise, Shaker exercise, Mendelsohn maneuver, and muscle strengthening exercises of the tongue and larynx.

Regarding patients with stroke, in a RCT conducted by Kang and Kim [1], patients with dysphagia showed a significant improvement in the neck strength and swallowing function when head lift exercises were performed for 30 minutes, 5 times a week for 6 weeks. RCTs conducted by McCullough et al. [46] and McCullough and Kim [47] also showed that the 2 weeks of the Mendelsohn method training improved hyoid anterior and superior movements and increased UES opening and swallow physiology in 18 patients with stroke and dysphagia. Regarding patients with oropharyngeal cancer, Kotz et al. [48] investigated the effect of prophylactic swallowing exercises in 26 patients with head and neck cancer. This study showed that patients who performed swallowing exercises (five exercises, including effortful swallowing, super-supraglottic swallowing, tongue hold, tongue retraction, and Mendelsohn maneuver, 10 times per day, and three times a day) showed better swallowing outcomes than patients who did not perform the exercises at 3 and 6 months after the treatment [48]. A RCT conducted by Lazarus et al. [44] also showed that tongue-strengthening exercises improved swallowing function in 12 patients with oropharyngeal cancer who underwent radiotherapy compared to 11 patients who were administered only conventional treatment. Notably, other studies also reported similar results.

In summary, tongue and pharyngeal muscle strengthening exercises contribute to improving swallowing function and reducing aspiration pneumonia in patients with brain lesions and head and neck tumors. Since these exercises can be easily performed for inpatients and outpatients in rehabilitation clinics, they are recommended for the treatment of dysphagia.

Recommendation

Tongue and pharyngeal muscle strengthening exercises are recommended to improve swallowing function and reduce the incidence of pneumonia.

KQ 6.2. Is EMST effective in improving swallowing function or quality of life?

The EMST increases subglottic air pressure, while changes in motor unit recruitment and neuromodulation have been proposed as the mechanism of effect.

Four RCTs on EMST showed that it improved swallowing function in patients with dysphagia. Three RCTs on patients with stroke [49-51] and one RCT on patients with multiple sclerosis [52] used commercially available EMST 150 equipment (Aspire Products LLC., Cape Carteret, NC, USA) and compared the effect with the sham treatment. As for EMST, a protocol of five sets per day was applied for 5 days a week. One set included five vigorous exhalations at 70% of the maximum expiratory pressure. All of these studies showed that EMST was effective in improving swallowing function compared to the control group [49-52], and the study conducted by Silverman et al. [52] also reported that it improved swallowing-related quality of life. EMST can improve swallowing function as well as respiratory function in patients with non-progressive neurological disease, thereby contributing to improving swallowing-related quality of life, but it can be only applied to patients who can fully understand the training method. Clinicians should be aware of its side effects, as performing strong expiratory pressure can cause hypotension, hyperventilation, or dizziness.

Recommendation

EMSTs are suggested to improve swallowing function and quality of life.

KQ 7. Are compensatory swallowing maneuvers effective in improving swallowing function, lowering the incidence of pneumonia, and improving quality of life?

Compensatory maneuvers are one of the rehabilitative strategies for dysphagia management. The compensatory swallowing maneuvers aim to keep patients safe when swallowing and promote temporary stability without permanently changing the swallowing mechanism. Compensatory swallowing maneuvers include chin tuck, chin down, head extension, head rotation, effortful swallow, Mendelsohn maneuver, tongue-hold maneuver, or Masako maneuver, supraglottic swallow, and super-su-
praglottic swallow. Compensatory swallowing maneuvers can induce immediate stability of the swallowing; however, as the same method must be applied every time swallowing occurs, patients may get tired easily due to the repeated application.

According to the observational study conducted by Solazzo et al. [53], compensatory swallowing techniques, such as a chin-down posture, head turned posture, and a hyperextended head posture, promoted safe swallowing in 66 (88.0%) of 75 patients with dysphagia. Furthermore, a study published by Ra et al. [54] also showed the effect of chin tuck, and the study conducted by Miyamoto et al. [55] reported that the chin-down maneuver was beneficial to swallowing function. The evidence for the effect of effortful swallowing seems to be weak at present, and no studies were found regarding the effect of Mendelsohn maneuver and tongue hold maneuver as compensatory swallowing techniques. Regarding supraglottic and super-supraglottic swallowing, a study reported that super-supraglottic swallow changes the airway closure and hyoid-larynx movement [56], while another study reported that supraglottic swallow does not change the propelling pressure of food lumps [57]. Further studies on their direct effect on swallowing function are needed in the future.

Compensatory swallowing maneuvers do not require a large burden of time and cost and can positively affect swallowing function and prevent complications. To date, there has been no RCT studying compensatory swallowing maneuvers; therefore, the level of evidence was considered very low.

KQ 8.1. Is surface NMES combined with swallowing therapy better for improving dysphagia in patients with non-progressive neurological disease compared with swallowing therapy alone?

Conventional swallowing therapy includes strengthening exercises for muscles involved in swallowing, compensatory maneuvers, sensory and tactile stimulation, and biofeedback [58]. In 2001, U.S. Food and Drug Administration approved the use of NMES, such as VitalStim® (Chattanooga Group, Hixson, TN, USA), for dysphagia treatment. This treatment method involves attaching electrodes to the skin and transmitting electrical signals to the muscles involved in swallowing to induce contraction.

Various studies evaluated the combined effect of surface NMES, including 10 RCTs [42,59-67] and two non-RCTs [68,69]. In most studies, the combination of NMES and swallowing therapy significantly improved objective and subjective indicators of swallowing function. A RCT conducted by Lee et al. [62] showed that when combined with NMES and conventional swallowing therapy, the FOIS was higher at 3 and 6 weeks after treatment compared to conventional swallowing therapy alone. A RCT conducted by Terré and Mearin [66] reported that the combination of NMES and conventional swallowing therapy improved oral intake function and reduced aspiration in patients with dysphagia. A RCT conducted by Xia et al. [67] also showed that the combination of NMES and conventional swallowing therapy was conducive to recovery from post-stroke dysphagia. Nine out of ten studies showed similar results, reporting that the combination of NMES and conventional swallowing therapy helped improve the swallowing questionnaire scores or swallowing test results more significantly than swallowing therapy alone. This treatment method is considered safe and effective. Therefore, NMES, in conjunction with swallowing therapy, is recommended for the treatment of dysphagia.

KQ 8.2. Is surface NMES combined with swallowing therapy better for improving dysphagia compared with swallowing therapy alone in patients with head and neck cancer?

Dysphagia after head and neck cancer surgery depends on the type and extent of the damage to the structures removed during surgery. It can also occur after radiation therapy, which induces progressive fibrosis of muscles or soft tissues that leads to progressive dysphagia [70].

For the treatment of dysphagia after head and neck cancer surgery, strengthening exercises of remaining muscles, postural maneuvers, and biofeedback techniques have been used to replace the original functions of the resected structures and minimize the weakening of the muscles [70]. The surface NMES has also been applied as an alternative treatment to strengthen the muscles through direct muscle contractions and prevent the atrophy of denervated muscles. One RCT and two case-control studies investigated the effectiveness of the combination of NMES and conventional swallowing therapy. A RCT conducted by Ryu et al. [71] showed that NMES combined with traditional swallowing training (14 patients) was superior to traditional swallowing training
alone (12 patients) in patients with head and neck cancer. Two case-control studies showed that NMES induced significant scores in the FOIS assessment and the degree of movement in the speed of the hyoid bone [72,73]. The combination of NMES and swallowing therapy is beneficial for improving dysphagia in patients with head and neck cancer.

Recommendation
The combination of surface NMES and swallowing therapy is suggested for improving the swallowing function in patients with head and neck cancer.

KQ 8.3. Does PES improve swallowing function and prevent pneumonia in patients with dysphagia caused by non-progressive neurological disease?

PES, which provides electrical stimulation directly to the pharynx, induces activation of the pharyngeal motor cortex via the corticobulbar pathway [74]. PES aims for cortical plasticity by activating the cerebral motor cortex by transmitting repetitive electrical stimulation into the pharynx.

Five RCTs on the PES compared its effect with sham stimulation [74-78]. Four RCTs reported that PES did not significantly improve the swallowing function or prevent pneumonia [74,75,77,78], while only Jayasekeran et al. [76] reported that PES was safe, reduced aspiration, and improved feeding status. Therefore, evidence of the positive effect of PES on improving swallowing function and preventing pneumonia is lacking.

Recommendation
It is difficult to recommend the application of PES in patients with oropharyngeal dysphagia caused by non-progressive nerve lesions since the effects of improving the swallowing function and preventing pneumonia are not clear.

KQ 9. Is stimulating the TRP channel with drugs effective in improving swallowing function, lowering the incidence of pneumonia, and improving the quality of life in patients with oropharyngeal dysphagia?

Although drug treatment for dysphagia is not currently widely applied in clinical practice, a number of drugs have been studied for their effect of improving swallowing response and preventing airway aspiration. TRP channel is a receptor that converts temperature stimuli into electrical signals and transmits them to the central nervous system. A number of substances, including a TRPV1 agonist (capsaicin) and a TRPM8 agonist (menthol), were used in several studies to induce swallowing responses in patients with dysphagia.

The effect of a capsaicin tablet was compared with a placebo tablet for 4 weeks before meals, and upper respiratory protective reflexes significantly improved in 64 older residents in a nursing home [79]. When TRPV1 agonist (capsaicin 1×10^-5 M) was administered for 10 days, the penetration–aspiration scale (PAS) score on the VFSS significantly decreased from 5.23±2.04 to 3±1.47 (p=0.002) [80,81]. The stimulation of TRPV1 improved swallowing safety and shortened the swallow response in older adult patients with oropharyngeal dysphagia. In two RCTs conducted by Cui et al. [82] and Wang et al. [83], capsaicin in conjunction with ice or thermal tactile stimulation was beneficial to the recovery of the swallowing function in patients with stroke and dysphagia. In addition to capsaicin, the effect of menthol (TRPM8 agonist) and piperine (TRPV1/TRPA1 agonist) injection studies on the swallowing function have also been reported [84,85]. Most RCTs (11 out of 12) reported that TRP channel stimulation improved swallowing function in the short term, and four non-RCTs reported that TRP stimulation improved the swallow response and swallowing function.

Currently, little is known about pharmacological approaches for the treatment of oropharyngeal dysphagia. Stimulation of the TRP channel via TRPV agonists (including capsaicin), administered through the oral cavity, oropharynx, or through stimulation of the ear canal, showed improvement in the swallowing function for a short period. However, its long-term use should be further investigated. The administration of a TRPV agonist, such as capsaicin, showed a short-term improvement in the swallowing effect, and it can be easily applied in Korea as capsaicin-rich red pepper is a very common food in Korea. The regular stimulation of the TRP channel seems to promote the recovery of the swallowing function in patients with dysphagia, but a clear standard for the dosage and the long-term use of drugs are needed in the future.

** Recommendation**
Pharmacological stimulation of the TRP channel is suggested for improving swallowing function.

KQ 10. Is biofeedback training effective for improving swallowing function, lowering the incidence of pneumonia, and improving quality of life?

Biofeedback is a technique that provides biological information to patients in real-time and facilitates normal movement.
patterns or induces sufficient muscle contractions during muscle-strengthening training [86]. Using biofeedback, the exercise performance is notified to the patients through audio-visual information to empower effective rehabilitation. Neuromuscular biofeedback methods include electromyography (EMG) biofeedback and real-time ultrasound imaging biofeedback. EMG biofeedback measures myoelectric signals through surface electrodes attached to target muscles and converts them into visual and auditory signals to induce sufficient muscle contractions [87].

A RCT conducted by Shin et al. [88] showed that suprahyoid muscle activity improved after 4 weeks of biofeedback training using surface EMG, compared to that before treatment in 45 patients with dysphagia after stroke. The effect of visuoauditory biofeedback is superior to visual biofeedback or self-exercise alone [88]. Another RCT conducted by Moon et al. [89] showed that swallowing training (effortful swallow and Mendelsohn maneuver) with surface EMG biofeedback training was more effective than swallowing training alone. Other case-control studies also showed that surface EMG biofeedback induced improvement in swallowing scores, such as functional dysphagia scale (FDS), PAS, videofluoroscopic dysphagia scale (VDS), or FOIS [90-94].

In summary, swallowing treatment using biofeedback is an effective adjunct to conventional swallowing therapy to improve swallowing function in patients with dysphagia. Although there is not much evidence, the benefit is clear compared to the harm. Since there are many hospitals that do not have biofeedback equipment, if applicable, biofeedback in conjunction with conventional swallowing therapy is recommended.

Recommendation

Biofeedback training is suggested for improving swallowing function.

KQ 11.1. Is CP botulinum toxin injection effective for improving swallowing function, reducing the risk of aspiration pneumonia, and improving diet in patients with CP dysfunction?

The CP muscle, which is located between the throat and esophagus, is the main component of UES. CP dysfunction or impaired relaxation due to various diseases, such as neurological disease, head and neck cancer, and Zenker’s diverticulum, causes symptoms of dysphagia, aspiration, and weight loss [95,96]. In patients with CP dysfunction, the cricopharyngeus fails to open during swallowing. Treatments for CP dysfunction include swallowing therapy and interventional techniques, such as botulinum toxin injection, dilatation, and myotomy. The effectiveness of CP botulinum toxin injection, which was first introduced by Blitzer in 1993, has been reported in previous studies [97].

Several studies reported the effects of CP botulinum injection, including two studies conducted by Alfonsi et al. [98] and Kelly et al. [99], which included 69 and 49 patients with CP dysfunction, respectively. Scores obtained from the eating assessment tool and Dysphagia Outcome and Severity Scale (DOSS) showed improvement after botulinum toxin injection. Botulinum toxin injection was highly effective in the treatment of dysphagia. In the study published by Jeong et al. [100] and Kim et al. [101], the success rate of botulinum toxin injection was 63.9% and 78.6%, respectively. The complication rate was very only, with only one patient showing temporary unilateral vocal fold paralysis [101]. The relative risk of the CP botulinum toxin injection seems to be low, and the benefits seem greater than the harms.

Recommendation

CP botulinum toxin injection is suggested to be performed while carefully considering the characteristics of dysphagia of each patient and the advantages and disadvantages of treatment.

KQ 11.2. Is CP myotomy effective in improving swallowing function, reducing the risk of aspiration pneumonia, and improving diet in patients with CP dysfunction?

CP myotomy is one of the surgical interventions applied for the treatment of CP dysfunction. CP myotomy is a treatment method that induces functional improvement by performing a complete incision of the CP muscle. Two approaches have been developed: the external transcervical approach, which has been performed for a long time, and the endoscopic CP myotomy, which has been performed relatively recently. In patients with defective CP relaxation, adequate oral and pharyngeal propulsion and laryngeal elevation may have a positive effect on improving the swallowing function. However, it has been reported that the effect of CP myotomy is inconclusive for patients who complain of subjective symptoms without clear abnormalities in anatomy and function [102].

McKenna and Dedo [103] conducted a study on the effects of CP myotomy through an external transcervical approach on 47 patients with CP dysfunction in 1992. After surgery, 45% and 30% of patients showed normal and improved swallowing
function, respectively, in the clinical symptom evaluation. Brigand et al. [104] showed that among 253 patients with severe dysfunctional pharyngo-esophageal junction who underwent CP myotomy through an external transcervical approach, 75% of patients reported improvement in oropharyngeal function. In addition, postoperative complications were observed in 15.8% of the patients, with the most common complications being mucosal break and pulmonary infection. Dauer et al. [105] compared eight patients who underwent CP myotomy through an external transcervical approach and 14 patients who underwent endoscopic CP myotomy. The laser technique was as effective as the transcervical approach, with a low risk of major complications. Takes et al. [106] and Ho et al. [107] showed that most patients reported improvement in dysphagia symptoms after endoscopic CP myotomy at 3 and 6 months, respectively.

Symptomatic improvement after CP myotomy seems to be approximately 60%–70% in patients with CP dysfunction. However, the clinician should consider that CP myotomy is invasive, irreversible, and permanent treatment with a possible risk of complications. Therefore, it seems difficult to judge whether the risks will be significantly higher than the relative risk for benefits, so an individual approach based on the patient’s condition seems necessary.

Recommendation

CP myotomy is suggested to be performed carefully in selective cases that are refractory to conventional treatment while considering the potential side effects, advantages, and disadvantages of the treatment. An individual approach based on the patient’s condition seems necessary.

KQ 11.3. Is balloon dilatation effective in improving swallowing function, reducing the risk of aspiration pneumonia, and improving diet in patients with CP dysfunction?

Balloon dilatation is a treatment method for CP dysfunction and is known as a relatively safe and efficacious in relieving UES dysfunction [108]. One of the dilatation techniques is the use of bougies, which reduces UES pressure and increases relaxation. Balloon dilatation for CP dysfunction restored UES resting pressure, improved UES relaxation, strengthened pharyngeal propulsion, and improved functional oral intake [108].

A RCT conducted by Wei et al. [109] showed that conventional swallowing therapy with modified balloon dilatation increased the excitability of affected projection and induced better improvement in FOIS compared to conventional swallowing alone at 3 weeks of treatment. When balloon dilatation was compared with laser myotomy, both improved UES opening for at least 6 months after the treatment [110]. Other studies also reported the effectiveness of balloon dilatation for treating CP dysfunction.

Balloon dilatation is a procedure that secures the visual field through an endoscope, and the risk of side effects is not high compared to other interventional procedures. It is considered valuable for treating CP dysfunction, but it is still invasive to a degree and may, therefore, require repeated procedures when CP dysfunction recurs.

Balloon dilatation is suggested to be performed carefully in selective cases that are refractory to conventional treatment, considering the advantages and disadvantages of the treatment. An individual approach based on the patient’s condition seems necessary.

KQ 12. Is the swallowing education program effective for improving swallowing function, reducing the risk of aspiration pneumonia, and improving diet?

For the treatment of dysphagia, various methods, including electrical stimulation therapy and swallowing exercises, are effectively used in clinical practice for the recovery of swallowing function. Recently, the need for a comprehensive swallowing education program that includes an understanding of dysphagia, self-swallowing exercise, and management has been emphasized.

Kang et al. [111] applied a comprehensive bedside swallowing exercise education program for 2 months in addition to the conventional swallowing therapy for patients with stroke and dysphagia. A video recording of the swallowing exercises, including oral, pharyngeal, laryngeal, and respiratory exercises, were played in the ward. These videos led to an improvement in swallowing function, emotional state, and quality of life in the patient group who received swallowing education. Cho et al. [112] also showed that the supervised self-exercise swallowing training program for 4 weeks induced improvement in the VDS in patients with stroke. Mashhour et al. [113] showed that swallowing exercise programs are also effective in patients with dysphagia due to the presence of head and neck tumors during radiation therapy. In addition, Chen et al. [114] confirmed that the swallowing exercise education program was effective in improving emotional dysphagia quality of life 6 months after treatment of oral cavity cancer.
The swallowing education program is effective in improving swallowing function. There is no harm that can be caused by performing the program, and the motivation for participation in the program is necessary to maximize its effect. The swallowing education program can be used as a modality for rehabilitation for patients with dysphagia.

Recommendation

The comprehensive swallowing education program, including self-exercise swallowing training, is suggested for improving swallowing function.

KQ 13.1. Is tDCS effective in improving swallowing function, reducing the risk of aspiration pneumonia, and improving diet?

tDCS, one of the non-invasive brain stimulation treatment methods, aims to induce functional improvement through neuroplasticity by controlling the activity of neural networks in the cortical areas. Positive therapeutic effects of tDCS on the recovery of language, motor, and cognitive function in patients with stroke have been reported in previous studies [115]. Regarding the effect of tDCS on patients with dysphagia, Jefferson et al. [116] first investigated the applicability of anodal tDCS stimulation to the pharyngeal motor cortex, and later, several studies reported the effects of tDCS stimulation on dysphagia after stroke.

In 2011, Kumar et al. [117] conducted a RCT wherein anodal tDCS was applied to the pharyngeal motor cortex area contralateral to the lesion site in patients with dysphagia with subacute stroke. There was a significant difference after anodal tDCS (seven patients) compared with sham tDCS (seven patients) in DOSS scores. Other RCTs also reported that anodal tDCS induced better swallowing function when comparing the effect of anodal tDCS with sham tDCS [118-122]. Most recently, in a RCT conducted by Sawan et al. [123], 20 patients who received anodal tDCS with conventional rehabilitation therapy for 5 days showed significant improvement in the swallowing function (VFSS and DOSS score) compared with 20 patients who received sham tDCS. Another recent RCT conducted by Wang et al. [124] reported a significantly higher improvement in the swallowing function after treating with an anodal tDCS, conventional swallowing rehabilitation therapy and catheter balloon dilatation in patients with CP dysfunction after brainstem stroke.

In tDCS, a weak direct current is used to stimulate the cerebral cortex [125]. tDCS has the advantage that it is easy to apply and safe with relatively few side effects. The side effects of tDCS are mild and include local erythema, tingling, or itching. In conclusion, tDCS applied to the contralateral or bilateral hemispheres is beneficial for the improvement of swallowing function when combined with swallowing therapy in patients with dysphagia.

Recommendation

tDCS is suggested for improving the swallowing function in patients with non-progressive brain lesions.

KQ 13.2. Is rTMS effective for improving the swallowing function and diet, as well as reducing risk of aspiration pneumonia?

rTMS is one of the non-invasive brain stimulation methods that is widely used to induce changes in the activity and neuroplasticity of the brain. In stroke, interhemispheric imbalance is observed with decreased excitability of the ipsilesional hemisphere and increased excitability of the contralesional hemisphere. rTMS directly delivers cortical stimulation. Low-frequency (LF) rTMS decreases cortical excitability, while high-frequency (HF) rTMS increases it. Several studies have investigated the effects of rTMS treatment on dysphagia.

A RCT conducted by Khedr et al. [126] showed that 3 Hz bilateral rTMS (10 minutes for 5 days) led to a significantly greater improvement in the swallowing function compared with sham rTMS in patients with stroke and dysphagia. Kim et al. [127] conducted a RCT to compare HF (5 Hz) ipsilateral rTMS (20 minutes for 10 days), LF (1 Hz) ipsilateral rTMS (20 minutes for 10 days), and sham rTMS in patients with brain injury and dysphagia. The results showed that FDS and PAS scores significantly improved after LF rTMS. Lim et al. [128] reported that both rTMS and NMES were effective for improving dysphagia and no significant differences were found between rTMS and NMES. Both HF and LF rTMS (3 Hz and 1 Hz, respectively) were reported to be effective for dysphagia in a RCT by Du et al. [129]. A study conducted by Park et al. [130] showed that bilateral stimulation was superior to unilateral or sham stimulation in 35 patients with stroke and dysphagia. Similarly, Zhang et al. [131] explained that bilateral rTMS combined with NMES produced higher cortical excitability and better swallowing function recovery compared to unilateral or sham rTMS.

Applying unilateral (LF and HF rTMS over the unaffected and affected hemispheres, respectively) or bilateral rTMS are recommended to improve the swallowing function and induce cortical neuroplasticity in patients with dysphagia. Since rTMS is a relatively new intervention in terms of applicability, addi-
tional costs are expected in addition to existing interventions, so cost-resource allocation needs to be considered. In addition, since rTMS treatment is not currently covered by medical insurance benefits, active attention by medical staff and institutional arrangements are needed.

Recommendation

rTMS is suggested for improving swallowing function in patients with non-progressive brain lesions.

KQ 14. Does enteral tube feeding improve the clinical course, survival, or nutritional status of patients who are likely to have oropharyngeal dysphagia for a long period of time?

Under nutrition is common in patients with dysphagia and nutritional status can deteriorate as the disease persists. There are two different methods for enteral tube feeding for patients with severe dysphagia. For nasogastric feeding, a tube is inserted through the nose to supply nutrition to the stomach. During a percutaneous endoscopic gastrostomy (PEG), a tube is inserted through a hole directly into the stomach to supply nutrients. Nutrition supply using a nasogastric tube is the most commonly used non-invasive treatment, but complications such as aspiration pneumonia, reflux esophagitis, and esophageal ulcers caused by mechanical stimulation may occur. Also, a nasogastric tube must be replaced once a month. If nasogastric tube feeding is expected to be required for a long period of time, gastrostomy is recommended. However, gastrostomy is an invasive procedure that can sometimes cause complications, such as inflammation and bleeding in the procedure site. It is still controversial whether feeding through a gastrostomy, rather than maintaining a nasogastric tube, affects the clinical course and mortality of patients.

Six RCTs investigated the effect of early or preventive enteral tube feeding, including one study on patients with stroke and five studies on patients with head and neck cancer. The usefulness of early (within 72 hours after stroke) and prophylactic enteral tube feeding was investigated in patients with oropharyngeal dysphagia due to stroke and head and neck cancer. A RCT conducted by Dennis et al. [132] reported that early enteral tube feeding (early defined as tube feeding within 7 days of admission) was associated with an absolute reduction in risk of death and a reduction in death or poor outcome in 741 patients with stroke. Among the five RCTs conducted on patients with head and neck cancer [133-137], three studies assessing the survival rate did not show an association between the application of early or prophylactic enteral tube feeding and the improvement in survival rate [134,136,137]. However, Silander et al. [134] and Salas et al. [133] reported that prophylactic PEG was associated with significantly fewer malnourished patients over time and improved quality of life at 6 months. These studies showed that early enteral tube feeding showed overall improvement in the clinical course or survival rate in patients with oropharyngeal dysphagia.

Five RCTs studies investigated whether to supply nutrients through nasogastric and gastrostomy tubes when tube feeding is to be maintained for a long period of time [138-142]. In most studies, patients who underwent gastrostomy showed better results in nutritional status, including blood albumin and body weight. A higher frequency of gastrointestinal bleeding, pneumonia, or urinary tract infection was reported in the nasogastric tube group compared to the gastrostomy group [140]. Gastrostomy feeding showed a positive effect on nutritional status and weight gain compared to nasogastric feeding. Gastrostomy tube feeding is likely to bring more benefits than nasogastric tube feeding when enteral tube feeding is required for a long period of time. Therefore, switching to a gastrostomy tube is recommended in patients who need to continue nasogastric tube feeding for a long time.

Since adequate nutrition and prevention of weight loss are very important issues in clinical practice, appropriate enteral tube feeding is recommended for patients who need sufficient nutrition. If it is likely that nasogastric tube feeding will continue for a long time, selecting an appropriate candidate who would benefit from gastrostomy tube feeding is recommended.

Recommendation 14-1

In patients who are likely to have oropharyngeal dysphagia for a long period of time, early enteral tube feeding is suggested for improving the clinical course, survival rate, and neurological prognosis.

Recommendation 14-2

In patients who are likely to have oropharyngeal dysphagia for a long period of time, a gastrostomy tube feeding is suggested for improving the clinical course, survival rate, neurological prognosis, and nutritional status.

KQ 15. Does texture modification of food or liquid affect the clinical course (nutrition status or dehydration) of dysphagia?

In patients with oropharyngeal dysphagia, aspiration may occur when food is not controlled in the oral cavity during the oral phase or when an appropriate pharyngeal swallowing
response is not initiated during the pharyngeal phase. If the muscle strength of the oral muscles is reduced or coordinated movements for swallowing are not appropriately performed, bolus formation or oral transit of food becomes difficult. In particular, in the case of oropharyngeal dysphagia caused by neurogenic problems, the risk of aspiration of low-viscosity food, such as water, is high due to lack of bolus control, reduced lingual propulsion, or delayed swallowing response in the pharyngeal phase [143]. Aspiration occurring during swallowing can cause poor nutritional status and impede sufficient fluid intake, increasing the risk of aspiration pneumonia [144]. Therefore, texture modification is one of the compensatory strategies for the treatment of dysphagia.

Five RCTs reported the beneficial effect of texture modification for preventing aspiration or aspiration pneumonia. A RCT conducted by Diniz et al. [145] reported that the use of a spoon-thick consistency reduced the risk of aspiration compared with the liquid consistency in 61 patients with stroke and dysphagia. Kyodo et al. [146] suggested that pureed diets containing a gelling agent might reduce the risk of aspiration pneumonia possibly by decreasing pharyngeal residues in patients with moderate to severe dysphagia.

In contrast, Robbins et al. [147] reported that texture modification did not affect the incidence of aspiration pneumonia. In 515 patients with dementia and Parkinson’s disease who presented aspiration on a liquid diet, the 3-month cumulative incidence of pneumonia did not show any difference when texture modification (nectar or honey) was applied compared to chin-down posture. More patients who had thickened liquids showed dehydration, urinary tract infection, and fever compared to those who ingested liquid with the chin-down posture.

There were differences in disease conditions, texture modification settings, and outcome scales among the studies; however, the positive effects of texture modification on the clinical course for patients with dysphagia seem to be significant, especially for the reduction of the risk of aspiration. Texture modification is relatively easy to apply and does not require large costs; therefore, applying texture modification is recommended based on the severity of dysphagia.

Recommendation

Texture modification of food and fluids is suggested based on the severity of dysphagia to improve the clinical course (nutrition status or dehydration) of patients with oropharyngeal dysphagia.

KQ 16. Does nutrition intervention improve intake or nutritional status in patients with oropharyngeal dysphagia?

Nutrition intervention is a process related to setting specific goals to solve the patient’s nutritional problems and establishing and executing plans for nutrition management. It aims to improve the quality of life by inducing changes in eating behavior and improving the patient’s nutritional status [148]. Patients with stroke often show malnutrition after hospitalization, which is presented by a reduction in muscle mass, low body mass, and low serum protein levels. Impaired oral function and dysphagia are associated with decreased oral intake, which increases the risk of malnutrition [149]. Nutrition intervention can reduce complication rates, admission rates, length of hospital stay, cost of care, and mortality [150]. Thus, a multidisciplinary team approach addressing nutritional problems can help patients with oropharyngeal dysphagia.

Eight studies [149,151-157] assessing the effectiveness of nutrition intervention in patients with dysphagia, including three RCTs and five non-randomized intervention studies, were found. A RCT conducted by Germain et al. [151] showed that older patients who received a dysphagia-specific nutrition care program showed significant differences in weight and calorie and protein intake compared to the control group. Reyes-Torres et al. [152] also reported that patients with dysphagia showed increased body weight, consumption of energy and protein, and handgrip strength after a 12-week nutrition intervention (modified consistency diet with a nectar or pudding viscosity) compared to the control group. Another RCT conducted by Taylor and Barr [153] showed that nutrition intervention (small and frequent meals) was associated with increased fluid intake. Five more observational studies showed some or no statistically significant differences in intake and nutritional status after a nutrition intervention; however, overall, nutrition intervention seems positively affect patients with dysphagia.

Recommendation

Nutrition intervention is suggested for improving intake or nutritional status in patients with oropharyngeal dysphagia.

KQ 17. Are the incidence and mortality rates of aspiration pneumonia higher in patients with oropharyngeal dysphagia compared with those without oropharyngeal dysphagia?

Pneumonia is the third leading cause of death in all age groups in Korea, and it is continuously increasing with aging [158]. Aspiration pneumonia is a bacterial pneumonia caused...
by aspiration of the contents of the oropharynx or upper gastrointestinal tract colonized by pathogenic bacteria and is more severe than non-aspiration pneumonia. It has been reported that aspiration pneumonia accounts for approximately 14.2% of community-acquired pneumonia; it is more common in older adults, requires more frequent ICU treatment, and has a longer hospital stay compared to non-aspiration pneumonia [159]. A major risk factor for aspiration pneumonia is known as dysphagia. Dysphagia is frequently observed in vulnerable patient groups, such as older adults and patients with neurological diseases, and is associated with an increase in mortality rate, hospitalization period, and medical costs [159-163]. Therefore, it is necessary to identify the relationship between dysphagia and aspiration pneumonia and diagnose and monitor high-risk groups to provide appropriate treatment quickly and accurately.

According to the study by Lo et al. [164], which compared 6,979 newly diagnosed patients with dysphagia and 20,937 undiagnosed patients, the incidence of aspiration pneumonia (1.75% vs. 0.92%, p<0.0001) and mortality (23.83% vs. 13.39%, p<0.001) was higher in the dysphagia group than in the control group. The incidence of 1-, 3-, and 5-year aspiration pneumonia and 1-, 3-, and 5-year mortality rates after stroke diagnosis was also higher in patients with dysphagia compared to the control group [160]. Another study also reported that among 9,930 adults aged 65 years or older who were admitted to 1,121 facilities, the presence and severity of dysphagia were related to the occurrence of aspiration pneumonia. Patients diagnosed with aspiration pneumonia had a statistically significant decline in swallowing function within 3 months compared to patients without a diagnosis (32.8% vs. 5.7%, p<0.001) [165]. In addition, other studies reported that the presence and severity of dysphagia were reported to be related to the occurrence of aspiration pneumonia [166-168].

In summary, oropharyngeal dysphagia increases the risk of aspiration, and patients with oropharyngeal dysphagia have a higher incidence and mortality of aspiration pneumonia than those without dysphagia.

Recommendation
The incidence and mortality of aspiration pneumonia are higher in patients with oropharyngeal dysphagia than in those without dysphagia. Therefore, patients with dysphagia should watch out for the occurrence of pneumonia.

KQ 19. Is the multidisciplinary team approach (doctor, nurse, therapist, nurse, etc.) effective for reducing complications (such as mortality, pneumonia, and other respiratory infections) in patients with oropharyngeal dysphagia?

The multidisciplinary rehabilitation team is made up of health care professionals who work collaboratively with patients and caregivers to evaluate and manage dysphagia. In the multidisciplinary team, doctors, speech-language pathologists, nutritionists, and nurses are usually involved. Prosthodontists and dentists can sometimes also be involved in identifying structural problems related to swallowing, and social workers can be involved in discharge plans. The goal of the multidisciplinary team approach is to identify patients at risk for dysphagia, evaluate the severity of dysphagia, and provide appropriate treatment [173-175].

A RCT conducted by Zheng et al. [176] showed that swallowing function significantly improved in patients with acute stroke who received a multidisciplinary team approach compared to the controls who received the conventional treatment. In four observational studies, patients who received care via the multidisciplinary team approach showed a significantly lower risk...
of dysphagia, pneumonia, and requirement for respiratory support, as well as greater patient satisfaction regarding swallowing function than patients who received conventional treatment [149,177-179].

Although the level of evidence is low, the multidisciplinary team approach should be performed because it can contribute to the improvement of swallowing function and reduce the occurrence of pneumonia. Overall, the multidisciplinary team approach seems to be effective in reducing the incidence of pneumonia during rehabilitation treatment of dysphagia.

Recommendation
A multidisciplinary team approach (doctors, nurses, therapists, etc.) is suggested for preventing complications (such as mortality, pneumonia, and other respiratory infections) in patients with oropharyngeal dysphagia.

DISCUSSION

This CPG aimed to review the literature and provide evidence-based guidelines for the assessment and management of dysphagia. This guideline is intended to help medical staff and related subjects in charge of patients with oropharyngeal dysphagia to make safer and more effective decisions by presenting assessment and treatment guidelines based on scientific and objective evidence. Therefore, this guideline aims to effectively deliver the information necessary for decision-making and provide patients with dysphagia with appropriate education, evaluation, and treatment. This will enable patients to improve their symptoms of dysphagia and improve their quality of life. The ultimate goal is to reduce complications and mortality due to the presence of dysphagia.

First, the effectiveness of diagnostic testing for oropharyngeal dysphagia was assessed. Early screening was effective in patients with suspected oropharyngeal dysphagia to reduce the occurrence of pneumonia with a high level of evidence. The recommendation levels were strong, and we concluded that if patients with oropharyngeal dysphagia are screened early and are provided with appropriate treatment as early as possible, serious complications, such as pneumonia, can be prevented. Standardized screening tests, such as BDST, GUSS, SSA, TOR-BSST, or Clinical Functional Scale for Dysphagia, were effective in diagnosing dysphagia, as well as single screening tests, such as the 3-oz water swallow test or the volume-viscosity swallow test. For high-risk patients who are unable to swallow their saliva properly, a standardized screening test was safer than a single screening test, which requires swallowing test, which requires swallowing water. A standardized screening test tool can evaluate a patient's swallowing function without directly swallowing food, and it was recommended to diagnose dysphagia in patients with suspected oropharyngeal dysphagia. To visualize a series of swallowing processes occurring in the oral, pharyngeal, and esophageal phases, and detect dysphagia, VFSS was strongly recommended for diagnosis of dysphagia with moderate levels of evidence. FEES can also be used to visualize the swallowing function, but FEES does not seem to be more effective than VFSS. Considering the benefits of the two diagnostic methods, we concluded that the two test methods complement each other and can be performed together.

There are various treatment methods for managing dysphagia. We investigated the efficacy of various rehabilitative strategies that are commonly used for the treatment of dysphagia. Oropharyngeal sensory stimulation therapy was effective in improving swallowing function and quality of life, as well as tongue and pharyngeal muscle strengthening exercises, which improved the swallowing function and reduced aspiration pneumonia in patients with brain lesions and head and neck tumors. EMSTs were also effective in improving the swallowing function and quality of life. Compensatory maneuvers, including chin tuck, chin down, and effortful swallow, were useful for improving the swallowing function and were recommended as effective rehabilitative techniques for dysphagia management. The combination of NMES and swallowing therapy was also recommended for improving the swallowing function in patients with non-progressive neuropathic lesions and head and neck cancer. The efficacy of PES for improving swallowing function and preventing pneumonia was unclear.

Treating dysphagia with drugs by stimulating the TRP channel, such as capsaicin, menthol, or piperine, was effective for improving the swallowing function, although it is well applied in clinical practice. Thus, future studies should investigate the effect of drug treatment. In addition, swallowing treatment using biofeedback as an adjunct to conventional swallowing therapy was effective in improving swallowing function. CP botulinum toxin injection, CP myotomy, and balloon dilatation seem to be effective treatment options for patients with CP dysfunction but should be performed after considering the advantages and disadvantages of the treatments. The effect of non-invasive brain stimulation treatment methods, such as tDCS and rTMS, were also investigated, and both of them were effective in improving the swallowing function in patients with
non-progressive brain lesions.

As for the nutrition issues, we concluded that early enteral tube feeding improved the clinical course, survival rate, and neurological prognosis for patients who are likely to have oropharyngeal dysphagia for a prolonged period. In addition, gastrostomy tube feeding should also be considered to improve the clinical course, survival rate, neurological prognosis, and nutritional status in patients who are likely to have oropharyngeal dysphagia for an extended period. In addition, texture modification of food and fluids based on the severity of dysphagia improved the clinical course of patients with oropharyngeal dysphagia, especially in reducing the risk of aspiration. Nutrition intervention, including addressing nutritional problems and establishing plans for nutrition management, was recommended because a literature search showed that it helps improve intake or nutritional status in patients with oropharyngeal dysphagia.

Other issues associated with dysphagia have also been addressed in this CPG. The current evidence showed that the incidence and mortality of aspiration pneumonia were, in fact, higher in patients with oropharyngeal dysphagia than those without dysphagia. Providing the oral health care program improved oral health and food intake in patients with oropharyngeal dysphagia. Additionally, a multidisciplinary team approach, including doctors in various fields, nurses, and therapists, was effective in preventing complications (such as mortality, pneumonia, and other respiratory infections). Various methods for the treatment of dysphagia should be performed, considering various aspects in patients with oropharyngeal dysphagia.

This CPG has several limitations. First, the statistical significance was not evaluated, and meta-analysis was not performed. Second, although the level of evidence for each clinical question was established based on the results of studies abroad, the recommendations of this CPG were primarily based on the applicability of the resources and healthcare system in Korea.

In conclusion, this CPG is the first guideline that provides the levels of evidence of relevant literature and the consensus of multidisciplinary experts regarding issues related to oropharyngeal dysphagia. Physicians, patients, caregivers, and other healthcare professionals are expected to widely read this CPG to improve their understanding and treatment of dysphagia.

CONFLICTS OF INTEREST

The members who were involved in this guideline had no other conflicts of interest (COI). The COI was required to determine whether or not these persons should be involved in the development of similar guidelines, employment, financial interests, and other potential interests. No potential conflicts of interest relevant to this article were reported.

ACKNOWLEDGEMENTS

This guideline was developed with financial support from the Korean Academy of Rehabilitation Medicine and the Korean Dysphagia Society. The development of this CPG was not influenced by the supporting academies and was not supported by other groups.

SUPPLEMENTARY MATERIALS

Supplementary materials can be found via https://doi.org/10.5535/arm.23069.

ORCID

Seoyon Yang, https://orcid.org/0000-0002-7522-1655
Jin-Woo Park, https://orcid.org/0000-0003-4989-2575
Kyunghoon Min, https://orcid.org/0000-0003-3357-9795
Yoon Se Lee, https://orcid.org/0000-0001-6534-5753
Young-Jin Song, https://orcid.org/0000-0003-0294-354X
Seong Hee Choi, https://orcid.org/0000-0003-2365-6187
Doo Young Kim, https://orcid.org/0000-0003-1327-5348
Seung Hak Lee, https://orcid.org/0000-0002-3017-8497
Hee Seung Yang, https://orcid.org/0000-0003-2492-7065
Wonjae Cha, https://orcid.org/0000-0001-7292-9474
Ji Won Kim, https://orcid.org/0000-0003-1587-9671
Byung-Mo Oh, https://orcid.org/0000-0001-9353-7541
Han Gil Seo, https://orcid.org/0000-0001-6904-7542
Min-Wook Kim, https://orcid.org/0000-0003-4505-809X
Hee-Soon Woo, https://orcid.org/0000-0003-4712-9808
Sung-Jong Park, https://orcid.org/0009-0009-1536-7765
Sungiu Lee, https://orcid.org/0000-0002-9400-9609
Ju Sun Oh, https://orcid.org/0000-0002-0994-3051
Ki Deok Park, https://orcid.org/0000-0003-1684-4737
Young Ju Jin, https://orcid.org/0000-0001-7428-5123
Sungjung Han, https://orcid.org/0000-0002-9065-2082
DooHan Yoo, https://orcid.org/0000-0002-4973-8853
Bo Hae Kim, https://orcid.org/0000-0002-4645-0678
Hyun Haeng Lee, https://orcid.org/0000-0001-6666-6284
Yeo Hyung Kim, https://orcid.org/0000-0002-3951-7205
REFERENCES

17. Sørensen RT, Rasmussen RS, Overgaard K, Lerche A, Johansen AM, Lindhardt T. Dysphagia screening and intensified oral hygiene re-
2012;138:376-82.

Kelley RE, Borazanci AP. Stroke rehabilitation. Neurol Res
Seoyon Yang, MD, PhD1, Jin-Woo Park, MD, PhD2, Kyunghoon Min, MD, PhD2, Yoon Se Lee, MD, PhD2, Young-Jun Song, OT2, Seong Hee Choi, PhD2, Doo Young Kim, MD2, Seung Hak Lee, MD, PhD2, Hee Seung Yang, MD, PhD2, Wonjae Cha, MD, PhD2, Ji Won Kim, MD, PhD2, Byung-Mo Oh, MD, PhD2, Han Gil Seo, MD, PhD1, Min-Wook Kim, MD, PhD1, Hee-Soon Woo, OT, PhD1, Sung-Jong Park, ST1, Sungju Lee, MD2, Ju Sun Oh, MD2, Ki Deok Park, MD2, Young Ju Jin, MD2, Sungjun Han, MD2, Doo Han Yoo, OT, PhD1, Bo Hae Kim, MD, PhD2, Hyun Haeng Lee, MD, MS2, Yeo Hyung Kim, MD, PhD2, Min-Gu Kang, MD2, Eun-Jae Chung, MD, PhD2, Bo Ryun Kim, MD, PhD2, Tae-Woo Kim, MD2,3, Eun Jae Ko, MD, PhD2, Young Min Park, MD, PhD2, Hanaro Park, MD2, Min-Su Kim, MD, PhD2, Jungri Seok, MD2, Sun Im, MD, PhD2, Sung-Hwa Ko, MD, PhD2, Seong Hoon Lim, MD, PhD2, Kee Wook Jung, MD, PhD2, Tae Hee Lee, MD, PhD2, Bo Young Hong, MD, PhD2, Wooseong Kim, MS, RD3, Weon-Un Shin, PhD3, Young Chan Lee, MD2, Sung Joon Park, MD2, Jeonghyun Lim, PhD, RD2, Youngkook Kim, MD, PhD2, Jung Hwan Lee, MD, PhD2, Kang-Min Ahn, DDS, MSD, PhD2, Jun-Young Paeng, DDS, PhD2, JeongYun Park, RN, PhD1, Young Ae Song, MSN, RN1, Kyung Cheon Seo, MD, PhD2, Chang Hwan Ryu, MD2, Jae-Keun Cho, MD, PhD2, Jee-Ho Lee, DDS2, Kyung Hye Choi, MD, PhD2

Kwandong University College of Medicine, Incheon, Korea
Department of Rehabilitation Medicine, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
Department of Physical Medicine and Rehabilitation, Veterans Health Service Medical Center, Seoul, Korea
Department of Otorhinolaryngology-Head and Neck Surgery, Sungkyunkwan University School of Medicine, Changwon, Korea
Department of Otolaryngology-Head and Neck Surgery, Samsung Changwon Hospital, Sungkyunkwan University School of Medicine, Changwon, Korea
Department of Otolaryngology-Head and Neck Surgery, CHA Bundang Medical Center, CHA University School of Medicine, Seongnam, Korea
Department of Otorhinolaryngology-Head and Neck Surgery, Seoul National University College of Medicine, Seoul, Korea
Department of Rehabilitation Medicine, Sungkyunkwan University School of Medicine, Seoul, Korea
Department of Otorhinolaryngology-Head and Neck Surgery, Kangwon National University Hospital, Kangwon National University College of Medicine, Chuncheon, Korea
Department of Otolaryngology-Head and Neck Surgery, St. Vincent's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Korea
Department of Otorhinolaryngology-Head and Neck Surgery, Sungjang Hospital, Konkuk University Medical Center, Seoul, Korea
Department of Rehabilitation Medicine, College of Medicine, The Catholic University of Korea, Seoul, Korea
Department of Physical Medicine and Rehabilitation, Dong-A University College of Medicine, Busan, Korea
Department of Otorhinolaryngology-Head and Neck Surgery, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, Korea
Department of Physical Medicine and Rehabilitation, Kangnam University College of Medicine, Seoul, Korea
Department of Rehabilitation Medicine, College of Medicine, The Catholic University of Korea, Seoul, Korea
Department of Otorhinolaryngology, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul, Korea
Department of Otorhinolaryngology-Head and Neck Surgery, Samsung Changwon Hospital, Sungkyunkwan University School of Medicine, Changwon, Korea
Department of Otorhinolaryngology-Head and Neck Surgery, CHA Bundang Medical Center, CHA University School of Medicine, Seongnam, Korea
Department of Otorhinolaryngology-Head and Neck Surgery, Seoul National University College of Medicine, Seoul, Korea
Department of Rehabilitation Medicine, Bucheon St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Bucheon, Korea
Department of Rehabilitation Medicine, Pusan National University & Pusan National University Yangsan Hospital, Yangsan, Korea
Department of Rehabilitation Medicine, St. Vincent's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Korea
Department of Gastroenterology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
Department of Gastroenterology, Konyang University College of Medicine, Daejeon, Korea
Department of Nutrition & Food Control, Gangnam Severance Hospital, Seoul, Korea
Department of Food & Nutrition, College of Human Ecology, Hanyang University, Seoul, Korea
Department of Otorhinolaryngology-Head and Neck Surgery, Kyung Hee University Hospital at Gangdong, Kyung Hee University School of Medicine, Seoul, Korea
Department of Otorhinolaryngology-Head and Neck Surgery, Chung-Ang University Gwangmyeong Hospital, Chung-Ang University College of Medicine, Gwangmyeong, Korea
Department of Food Service & Nutrition Care, Seoul National University Hospital, Seoul, Korea
Department of Rehabilitation Medicine, Yeouido St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Korea
Hamidun Rehabilitation Clinic, Yongin, Korea
Department of Oral and Maxillofacial Surgery, University of Ulsan College of Medicine, Seoul, Korea

Department of Rehabilitation Medicine, Ewha Womans University Seoul Hospital, Ewha Womans University College of Medicine, Seoul, Korea
Department of Physical Medicine and Rehabilitation, Dongguk University Ilsan Hospital, Goyang, Korea
Department of Rehabilitation Medicine, CHA Bundang Medical Center, CHA University School of Medicine, Seongnam, Korea
Department of Otorhinolaryngology-Head and Neck Surgery, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
Department of Occupational Therapy, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
Department of Audiology and Speech-Language Pathology, Daegu Catholic University, Gyeongsan, Korea
Department of Rehabilitation Medicine, International St. Mary's Hospital, Catholic University of Korea, Seoul, Korea
Ann Rehabil Med [Epub ahead of print]
Department of Oral and Maxillofacial Surgery, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
Department of Clinical Nursing, University of Ulsan, Seoul, Korea
Department of Nursing, Seoul National University Bundang Hospital, Seongnam, Korea
Department of Physical Medicine and Rehabilitation, Korea University Anam Hospital, Seoul, Korea
Department of Otolaryngology-Head and Neck Surgery, Center for Thyroid Cancer Research Institute and Hospital, National Cancer Center, Goyang, Korea
Department of Otorhinolaryngology-Head and Neck Surgery, Inje University Ilsan Paik Hospital, Inje University College of Medicine, Goyang, Korea
Department of Oral and Maxillofacial Surgery, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
Instructions for authors

Enacted in May, 2011
Revised on January 31, 2013
Revised on August 1, 2018
Revised on Mar 11, 2019
Revised on Mar 16, 2020
Revised on June 9, 2023

1. AIMS & SCOPE

Annals of Rehabilitation Medicine (ARM) is the official journal of the Korean Academy of Rehabilitation Medicine. It is an international, peer-reviewed open access journal, which aims to be a global leader in sharing up-to-date knowledge dedicated to the advancement of care and enhancing the function and quality of life of persons with various disabilities and chronic illnesses. As the official journal of one of the largest societies of rehabilitation medicine in Asia and Oceania, nearly 8,000 physiatrists receive this journal every two months as a member benefit. This journal is endorsed by the International Society of Physical and Rehabilitation Medicine (ISPRM) and the Asia-Oceanian Society of Physical and Rehabilitation Medicine (AOSPRM). International members comprise approximately half the editorial board and conduct peer-review of submitted manuscripts.

The journal encompasses all aspects of physical medicine and rehabilitation, including clinical practice, experimental and applied research, and education. Research areas covered by this journal include rehabilitation of brain disorders and spinal cord injury; electrodiagnosis; musculoskeletal disorders and pain; pediatric, geriatric, cardiopulmonary, sports, cancer, cognitive, and robotic rehabilitation; neuromodulation; neuroimaging; orthotics and prosthetics; physical modalities; clinical trials; quality of life issues; and basic research, as well as other emerging fields in rehabilitation medicine.

2. COPYRIGHTS AND CREATIVE COMMONS ATTRIBUTION LICENSE

The Korean Academy of Rehabilitation Medicine is the owner of all copyright to papers published in ARM, and has the right to publish, reproduce, distribute, and print the contents in other types of media. Authors of accepted papers must complete the Copyright Transfer Form. A letter of permission is required for any and all material that has been published previously. It is the responsibility of the author to request permission from the publisher for any material that is being reproduced. This requirement applies to text, illustrations, and tables. This is identical to the Creative Commons (Attribution-Noncommercial) license available at http://creativecommons.org/.

3. GENERAL GUIDELINES

The manuscript guidelines for ARM are based on the “Recommendations for the Conduct, Reporting, Editing, and Publication of Scholarly work in Medical Journals” published by the International Committee of Medical Journal Editors (http://www.icmje.org), and instructions which are not mentioned in the present guidelines are referred to the guidelines stated in the Recommendations. There are no fees payable to submit in this journal.

1) ARTICLE TYPES

Manuscripts include original articles, review articles, brief reports, case reports, images in this issue, and letters to the editor.

(1) Original articles

This form of publication represents original research articles reporting the results of basic and clinical investigations that are sufficiently well documented to be acceptable to critical readers.

(2) Review articles

The Editorial Board welcomes state-of-the-art review articles. The ARM strongly prefers systematic reviews of the literature. Invited review articles provide a comprehensive review of a subject of importance to clinicians and researchers and are commissioned by the editorial board to an invited expert in the field.

(3) Brief reports

These manuscripts are short but important reports to provide preliminary communications with less complete data sets than would be appropriate for original contributions that present novel and impactful clinical and basic research of a more preliminary nature.

(4) Case reports

Case reports are considered for publication when at least one of the following criteria is met: (a) a rare condition is reported, (b)
atypical symptoms and signs are observed, (c) new diagnostic or therapeutic methods are introduced, (d) atypical clinical and laboratory findings for populations residing in Asia and the Pacific Rim. Descriptions of clinical cases (individual or a series) should be unique, should deal with clinical cases of exceptional interest or innovation and should preferably be a first-time report.

(5) Images in this issue
This form of publication represents images (e.g., radiographs, CT, MRI, electrodiagnostic tracings, pathology, physical examination findings, photos of a patient or medical device) that are interesting and unique.

(6) Letters to the editor
Critical comments are welcomed for providing alternative interpretations or views about articles published in ARM. Letters should be directly related to the published article on which it comments. Letters being considered for publication ordinarily will be sent to the authors, who will be given the opportunity to reply. Letters will be published at the discretion of the editors and are subject to abridgement and editing for style and content.

2) LANGUAGE OF MANUSCRIPT
All manuscripts must be written in clearly understandable English. Authors whose first language is not English are requested to have their manuscripts checked for grammatical and linguistic correctness before submission. Correct medical terminology should be used, and jargon should be avoided. Use of abbreviations should be minimized and restricted to those that are generally recognized. When using an abbreviated word, it should be spelled out in full on first usage in the manuscript followed by the abbreviation in parentheses. Numbers should be written in Arabic numerals, but must be spelled out when placed in the beginning of a sentence. Measurements should be reported using the metric system, and hematologic and biochemical markers should be reported in International System (SI) of Units. All units must be preceded by one space except percentage (%), temperature (°C), and degree (°).

4. RESEARCH AND PUBLICATION ETHICS
All manuscripts should be written with strict adherence to the research and publication ethics guidelines recommended by Council of Science Editors (http://www.councilscienceeditors.org/), International Committee of Medical Journal Editors (ICMJE, http://www.icmje.org/), World Association of Medical Editors (WAME, http://www.wame.org/), and the Korean Association of Medical Journal Editors (KAMJE, https://www.kamje.or.kr/en/main_en). For all studies involving human subjects, the principles embodied in the Declaration of Helsinki (https://www.wma.net/policies-post/wma-declaration-of-helsinki-ethical-principles-for-medical-research-involving-human-subjects/) should be upheld, informed consent must be obtained from all participants, and must be approved by a recognized Institutional Review Board (IRB) or research ethics committee. The editor may request submission of copies of informed consents from human subjects in clinical studies or IRB approval documents. Experiments involving animals should comply with the NIH guidelines for the use of laboratory animals (https://www.nlm.nih.gov/services/research_report_guide.html) and/or be reviewed by an appropriate committee (e.g., Institutional Animal Care and Use Committee, IACUC) to ensure the ethical treatment of animals in research. Also, studies with pathogens requiring a high degree of biosafety should pass review of a relevant committee (e.g., Institutional Biosafety Committee, IBC). ARM will follow the guidelines by the Committee on Publication Ethics (COPE, http://publicationethics.org/) for settlement of any misconduct.

1) REDUNDANT PUBLICATION AND PLAGIARISM
All submitted manuscripts should be original and should not be considered by other scientific journals for publication at the same time. No part of the accepted manuscript should be duplicated in any other scientific journal without the permission of the editorial board. If plagiarism or duplicate publication related to the papers of this journal is detected, the manuscripts may be rejected, the authors will be announced in the journal, and their institutes will be informed. There will also be penalties for the authors.

2) AUTHORSHIP
ARM follows the recommendations by International Committee of Medical Journal Editors (ICMJE,http://www.icmje.org/) and the Korean Association of Medical Journal Editors (KAMJE, https://www.kamje.or.kr/en/main_en). Authorship is credited to those who have direct involvement in the study and have made significant contributions to (a) substantial contributions to the conception or design of the work; or the acquisition, analysis, or interpretation of data for the work; AND (b) drafting the work or revising it critically for important intellectual content; AND (c) final approval of the version to be published; AND (d) agreement to be accountable for all aspects of the work in ensuring that questions related to the accuracy or integrity of any part of the work are appropriately investigated and resolved as recommended by ICMJE. The primary investigator is designated the first author of the study, unless contested by the other authors. The correspond-
ing author is directly responsible for communication and revision of the submitted manuscript. Authors are required to include a statement of responsibility in the manuscript that specifies the contribution of every author at the end of the manuscript, in a section entitled “Author contribution.” All persons who have made substantial contribution, but who are not eligible as authors should be named in the acknowledgments. In the case of change of authorship, a written explanation must be submitted. Change in either the first author or the corresponding author requires approval by the editorial board, and any changes in the other authors require approval by the editor-in-chief.

3) CONFLICT OF INTEREST

The corresponding author of an article is asked to inform the editor of the authors’ potential conflicts of interest possibly influencing their interpretation of data. A potential conflict of interest must be disclosed during the online submission process on the appropriate web page. Such conflicts may be financial support or private connections to pharmaceutical companies, political pressure from interest groups, or academic problems based on the “ICMJE Uniform Disclosure Form for Potential Conflicts of Interest” (http://www.icmje.org/coi_disclosure.pdf). The editor will decide whether the information on the conflict should be included in the published paper. Before publishing such information, the editor will consult with the corresponding author. In particular, all sources of funding for a study should be explicitly stated.

4) REGISTRATION OF CLINICAL TRIAL

Clinical trial defined as “any research project that prospectively assigns human subjects to intervention and comparison groups to study the cause-and-effect relationship between a medical intervention and a health outcome” is recommended to be registered in the primary registry to be prior publication. ARM recommend, as a condition of consideration for publication, registration in a public trials registry. ARM accepts the registration in any of the primary registries that participate in the WHO International Clinical Trials Portal (http://www.who.int/ictrp/en/), NIH ClinicalTrials.gov (http://www.clinicaltrials.gov/), ISRCTN Resister (www.isrctn.org), ANZCTR (https://www.anzctr.org.au/), EudraCT Database (https://eudract.ema.europa.eu/), Clinical Trials Information System (https://euclinicaltrials.eu/), University Hospital Medical Information Network (www.umin.ac.jp/ctr/index/), EU Clinical Trials Register (https://www.clinicaltrial-register.eu/) or The Clinical Research Information Service (http://cris.nih.go.kr/). The clinical trial registration number will be published at the end of the abstract.

5) PROCESS FOR MANAGING RESEARCH AND PUBLICATION MISCONDUCT

When the journal faces suspected cases of research and publication misconduct such as redundant (duplicate) publication, plagiarism, fraudulent or fabricated data, changes in authorship, an undisclosed conflict of interest, ethical problems with a submitted manuscript, a reviewer who has appropriated an author’s idea or data, complaints against editors, and so on, the resolution process will follow the flowchart provided by the Committee on Publication Ethics (COPE, https://publicationethics.org/guidance/Flowcharts). The discussion and decision on the suspected cases are carried out by the Editorial Board.

6) PROCESS FOR HANDLING CASES REQUIRING CORRECTIONS, RETRACTIONS, AND EDITORIAL EXPRESSIONS OF CONCERN

5. MANUSCRIPT SUBMISSION

All submissions are made online at the journal’s online manuscript submission site (http://www.e-arm.org/submission) by the corresponding author. Submitted manuscripts are initially examined for format, and then appointed a submission number. For nonbiased peer review, authors’ names and institutional affiliations should not be mentioned in the text. The revised manuscript should be submitted through the same web system under the same identification numbers. The date of final review for the manuscript will be the date of acceptance for publication. If you have any questions about the online submission process, contact the Editorial Office by e-mail at edit@e-arm.org.

1) ARTICLE PROCESSING CHARGES

ARM is an open access journal. To publish in ARM, authors are asked to pay an article processing charge (APC) on acceptance of their research paper. The APC for all published papers is as follows, plus VAT or local taxes where applicable. The currency KRW will be applied to the submissions from South Korea.

- Original article/ Unsolicited review article: 400 USD or 400,000 KRW
- Solicited article: Free
6. PEER REVIEW PROCESS

1) EDITORIAL REJECT POLICY
Conformity of the submitted manuscript to the submission instructions is examined upon submission. The Editorial Board may reject the manuscript or request the author to resubmit in the following cases: 1) Topic clearly out of scope / insufficient perceptual content 2) Work clearly does not meet sufficient standards of novelty or quality 3) Manuscript incomplete or incorrectly formatted 4) Suspected plagiarism in the manuscript.

2) PEER REVIEW PROCESS
Submitted manuscripts will be reviewed by two or more peer reviewers selected from the board's database of expert reviewers. In addition, if deemed necessary, a review of statistics may be requested. Following review, the editorial board will decide whether the manuscript will be 1) accepted for publication, 2) subject to minor revision, 3) subject to major revision, or 4) rejected for publication. For manuscripts which are either subject to minor revision or subject to major revision, the corresponding author must resubmit the revised manuscript online. The revised manuscript should have the changes highlighted by using the Track Changes tool in Microsoft Office Word. In addition, the corresponding author must reply to both reviewers' comments point by point, and explain in detail what changes were made in the manuscript. When considered necessary, the editorial board may make changes to the structure and phrases of the manuscript without compromising the integrity of the original paper. After completion of the peer review process, the editorial board will determine acceptance for publication and notify the corresponding author by e-mail. Manuscripts which do not comply with the present guidelines will be notified for correction or withheld from publication.

When a manuscript is not resubmitted within 2 months of notification, it will be considered that the authors have withdrawn the manuscript from submission. Manuscripts accepted for publication are generally published in order of submission, depending on the category of the manuscript and the date of acceptance for publication.

7. PREPARATION OF THE MANUSCRIPT
Use Microsoft Office Word (versions after 2003) and ensure correct spelling and grammar. Setup the MS Word document for 1-inch margins on letter or A4-sized paper. The manuscript must be written in 12-point font and the sentences must be double-spaced, including tables and figure legends. Each page should be numbered in the middle of the lower margin, and all sentences must be numbered sequentially throughout the entirety of the manuscript, starting with the title page. All papers must be accompanied by a title page. The title page should contain the title of the manuscript, a short running title, the authors' names, academic degrees, respective affiliations, and ORCID. The corresponding author must be identified, and his or her contact information (postal address, e-mail, telephone and fax numbers) should be listed. The title should clearly describe the objective of the study and contain less than 20 words. The first letter of each word of the title should be in capital letters except for prepositions, articles, and conjunctions. Provide a short running title containing less than 10 words. In cases in which the authors belong to multiple affiliations, the affiliations during the study being reported should be matched to the authors' names using a superscript of Arabic numerals. Conflicts of interest, funding information, author contribution and acknowledgements (when applicable) should also be located in the title page.

1) ORIGINAL ARTICLES
Original papers should be structured in the following order: Abstract, Introduction, Methods, Results, Discussion, Conflict of interests, Funding information, Author contribution, Acknowledgements (when applicable), References, Tables, Figure legends, and Figures. Maximum word count is limited to 5,000 words.

(1) Abstract
A structured abstract with the headings of Objective, Methods, Results, and Conclusion must succinctly describe the paper in 250 words or less. Use complete sentences and do not number the results. At the end of the abstract, list up to 5 relevant keywords which are in accordance to the Medical Subject Headings (MeSH) in the Index Medicus (http://www.nlm.nih.gov/mesh).

(2) Introduction
Clearly present the objective of the study and its relationship to earlier work in the field. A brief background to inform the readers of the relevance of the study may be necessary. However, avoid extensive review of the literature.

(3) Methods
Describe the participants or research materials of the study, and explain in detail the inclusion and exclusion criteria for both the experimental and control groups. Describe the experimental
methods in a logical and systematic manner so that they can be reproducible by another investigator. Experimental drugs should be stated in the generic name. When proprietary brands are used, include the brand name and the name of the manufacturer in parentheses after the first mention of the generic name. When using experimental devices or other products, state the brand name then follow with the name of the manufacturer, in parentheses, e.g., Flow Cytometer (Coulter Electronic Inc.). To ensure anonymity during the peer review process, the authors’ affiliations or institutional setting of the study should not be revealed. Statistical analysis and criteria for determining significance should be described in enough detail to allow the knowledgeable reader with access to the original data to verify the reported results. An ethics statement should be placed here when the studies are performed using clinical samples or data, and animals.

Ensure correct use of the terms sex (when reporting biological factors) and gender (identity, psychosocial or cultural factors), and, unless inappropriate, report the sex and/or gender of study participants, the sex of animals or cells, and describe the methods used to determine sex and gender. If the study was done involving an exclusive population, for example in only one sex, authors should justify why, except in obvious cases (e.g., prostate cancer). Authors should define how they determined race or ethnicity and justify their relevance.

(4) Results
Summarize and describe logically the significant findings and trends observed in the results using text, figures and tables. Avoid extensive repetition of contents of the tables and figures in the text.

In statistical expression, mean and standard deviation should be described as mean ± SD, and mean and standard error as mean ± SE. In general, p-values larger than 0.01 should be reported to two decimal places, those between 0.01 and 0.001 to three decimal places; p-values smaller than 0.001 should be reported as p < 0.001.

(5) Discussion
Interpret the results in respect to the objective of the study, and describe differences with previous studies and significant findings which lead to the deduction of the conclusion. Refrain from excessive review of historic studies, textbook facts, or irrelevant references. Accentuate newly obtained observations from the study, and include significant limitations of the study.

(6) Conflicts of interest
Any potential conflicts of interest relevant to the manuscript should be described. If there are no conflicts of interest, authors should state that none exists.

(7) Funding information
All sources of funding applicable to the study should be stated here explicitly. All original articles, editorials, reviews, and new technology articles must state funding sources for the study.

(8) Author contribution
The individual contributions of the authors to the manuscript should be specified in this section.

(9) Acknowledgments
Persons who have made contributions to the study, but who are not eligible for authorship can be named in this section. Their contribution must be specified, such as data collection, financial support, statistical analysis, or experimentation. The corresponding author must inform the named contributor of the acknowledgment, and acquire consent before manuscript submission.

(10) References
- Cite only references which are quoted in the text. Limit the number of references 40.
- When quoting a reference in the text, refrain from stating the author’s name, and identify references with Arabic numerals in brackets such as [1], [2-4], and [5,7,9].
- The references should be listed in order of citation in the text.
- List all authors when there are 6 or fewer; when there are 7 or more, list the first 6, followed by “et al.”
- Journal names should be abbreviated according to the format listed in the Index Medicus. If the journal is not listed in the Index Medicus, refer to the list of title word abbreviations by the ISSN network (http://www.issn.org/2-22660-LTWA.php).

Journals

Book & Chapter of book
3. Frontera W, Silver JK, Rizzo TD. Essentials of physical medicine

Proceedings of academic conference

Thesis (Dissertation)

11. Tables
Tables should be submitted separately from the text, and each table should be created in MS Word on separate pages, using double space throughout. They should be simple, self-explanatory, and not redundant with the text or the figures. Limit 5 tables per manuscript. The title of the tables should be written in phrases, and capitalized the first letter of the first word. The title should be placed above the table, and abbreviations and footnotes should be placed under the table. Number the tables in order of appearance in the text (e.g., Table 1, Table 2). All abbreviations used in the table must be spelled-out in full under the table in the following order: abbreviation, comma, full word (e.g., RM, rehabilitation medicine). Table footnotes should be indicated in superscripts in the following order: a), b), c)… but p-values should be indicated by asterisk (e.g., *p < 0.05, **p < 0.01. ***p < 0.001).

12. Figure legends
Legends should be submitted separately from the text, and each legend should be typed on separate pages. They should be written in full sentences to describe the content of the figure, and only the first letter of the legend should be capitalized. For lengthy legends continuing beyond one line, the left margin of the following lines should start at the same point as the first line. Any symbols, marks or abbreviations made in the figure must be explained in the legend. Figures containing histologic slides should be accompanied by legends explaining tissue origin, stain method, and microscopic amplification.

13. Figures
Figures should be uploaded online as separate files and numbered in order of appearance in the text (e.g., Fig. 1). When a single numbered figure contains 2 or more figures, the figure should be numbered with an alphabet letter following the number (e.g., Fig. 1A, Fig. 1B). Indicate focus points in the figures with markers such as arrows and arrowheads, etc. Image files must be of resolutions higher than 300 dpi, and less than 3 MB, in JPEG, GIF, TIFF, or Microsoft PowerPoint format. A single numbered figure containing more 2 or more figures such as Fig. 1A and Fig. 1B should be uploaded as a single file.

2) REVIEW ARTICLES
The abstract should contain no more than 250 words and 5 keywords. The text is structured in the order of Introduction, Main text, Conclusion, Conflict of interests, Funding information, Author contribution, Acknowledgments (when applicable), References, Tables, Figure legends, and Figures.

3) BRIEF REPORTS
General guidelines are the same as for the original article. The manuscript is structured in the order of Abstract, Main text, Conflict of interests, Funding information, Author contribution, Acknowledgments (when applicable), References, Tables, Figure legends, and Figures. A structured abstract is required and limited to 150 words, with no more than 3 keywords attached. Manuscripts should be limited to 1,500 words of text including references and figure legends (not including abstract, tables, and figures), and no more than 10 references. The total number of figures and/or tables is limited to 3.

4) CASE REPORTS
General guidelines and order of manuscript preparation are the same as for the original article. Case reports are considered for publication only if they report rare conditions, atypical symptoms and signs, novel diagnostic or therapeutic approaches, or describe atypical findings for populations residing in Asia and the Pacific Rim. The editorial board will determine whether the case report fulfills the above criteria for acceptance of publication. The manuscript is structured in the order of Abstract, Introduction, Case report, Discussion, Conflict of interests, Funding information, Author contribution, Acknowledgments (when applicable), References, Tables, Figure legends, and Figures. The abstract should be nonstructured and limited to 150 words, with no more than 3 keywords attached. The introduction should briefly state the background and significance of the case. The actual case report should describe the clinical presentation and the diagnostic and therapeutic measures taken. The discussion should focus on the uniqueness of the case and should not contain extensive review of the disease or disorder. The combined number of tables and figures is limited to 5, and the number of references is limited to 10.
Maximum word count is limited to 1,500 words including references and figure legends.

5) IMAGES IN THIS ISSUE
All images should be accompanied by a short description of the image and a brief and concise clinical review of the specific patient or clinical issue of no more than 500 words (excluding references) with references limited to 5. Image files must be of resolutions higher than 300 dpi for photographs, and 900 dpi for line art, waveforms, and graphs, in JPEG, GIF, TIFF, or Microsoft PowerPoint format. Images should make up a single figure, although they may contain more than one frame. The manuscript does not have an abstract.

6) LETTERS TO THE EDITOR
Letters should not have an abstract, tables, figures, and data supplements. Letters must be limited to roughly 500 words of text and no more than 5 references, 1 of which should be to the recent ARM article. Letters may have no more than 3 authors.

7) REPORTING GUIDELINES FOR SPECIFIC STUDY DESIGNS
For the specific study design, such as randomized control studies, studies of diagnostic accuracy, meta-analyses, observational studies, and non-randomized studies, it is recommended that the authors follow the reporting guidelines listed in the following table.

8. SUBMISSION APPLICATION & COPYRIGHT TRANSFER
All submitted manuscripts must be accompanied by the official Submission Application & Copyright Transfer Form of the Korean Academy of Rehabilitation Medicine. The Submission Application & Copyright Transfer Form must contain the title of the manuscript, date of submission, names of all authors, authors’ affiliations, and written signatures. Note the corresponding author and provide his/her affiliation, e-mail, telephone and fax numbers, and mailing address.

For the copyrights of the contributions published in ARM, see Creative Commons (Attribution-Noncommercial) at http://creativecommons.org.

9. MANUSCRIPTS AFTER ACCEPTANCE
ARM is published in English bi-monthly on the last days of February, April, June, August, October, and December.

1) FINAL VERSION UPLOAD
When accepted for publication, the authors’ institutional affiliations should be inserted into the text of the final revised manuscript and uploaded to the online submission system. Files containing figures should be of the highest resolution (at least 300 dpi for color figures, and 900 dpi for line art and graphs) should be also be uploaded in JPEG, GIF, or TIFF format, and must be named according to the figure number (e.g., Fig. 1.jpg).

2) GALLEY PROOF
Galley proofs will be sent to the corresponding author for final corrections. Corrections should be kept to a minimum, must be returned within 2 days, otherwise publication may be delayed. Any fault found after the publication is the responsibility of the authors. We urge our contributors to proofread their accepted manuscripts very carefully. After the publication, if there are critical errors, they should be corrected as Corrigendum or Erratum.

3) PUBLICATION
The editorial board retains the right to request minor stylistic and major alterations that might influence the scientific content of the paper. The final manuscript will be published following final approval by the editor-in-chief.
Checklist for Authors

General
☐ All elements of the manuscript are printed in English and double-spaced with 1-inch margins at top, bottom, and sides. Right margins are unjustified.
☐ All pages are numbered in the following order: title page, structured or standard abstract, body of the text, conflict of interests, Funding information, Author contribution, Acknowledgments (when applicable), references, legends, and tables.
☐ The text is consecutively line numbered.
☐ The Submission Application & Copyright Transfer Form is signed by the guarantor at original submission.

Abstract (applied to original articles, review articles, brief reports, and case reports)
☐ A structured abstract with the headings of Objective, Methods, Results, and Conclusion (A nonstructured abstract for case reports) must succinctly describe the paper.
☐ At the end of the abstract, relevant keywords are listed.

References
☐ All references have been checked for accuracy and completeness.
☐ Cite only references which are quoted in the text. Limit the number of references 40 for original articles, 10 for brief reports and case reports, and 5 for images in this issue and letters to the editor.
☐ Are numbered consecutively in the order they are cited in the text; all listed references have been cited in the text.
☐ Do NOT parenthesize the superscript numerals, and hyphenate (-) when citing 3 or more references in consecutive order.
☐ The format prescribed by the "Recommendations for the Conduct, Reporting, Editing and Publication of Scholarly Work in Medical Journals (ICMJE Recommendations)" has been followed. Examples provided under Instructions for Authors have been uploaded.
☐ List all authors when there are 6 or fewer; when there are 7 or more, list the first 6, followed by “et al.”
☐ Journal names should be abbreviated according to the format listed in the Index Medicus. If the journal is not listed in the Index Medicus, refer to the list of title word abbreviations by the ISSN network (http://www.issn.org/2-22660-LTWA.php).

Figure Legends
☐ Figure legends are provided for each figure.
☐ Figure legends are numbered and presented together in numeric order following reference page(s).

Tables
☐ Each table is headed by a title and numbered in Arabic numerals on a separate page.
☐ The title of the tables should be written in phrases, and capitalized the first letter of the first word.
☐ There are less than 5 tables in the text of original articles.
☐ Tables are cited in numeric sequence in the text.

Figures
☐ Each is numbered with an Arabic numeral and cited in numeric sequence in the text.
☐ Photographs of recognizable persons should be accompanied by a signed release from the patient or legal guardian authorizing publication. Masking eyes to hide identity is not sufficient.
Credits & Permissions
☐ In addition to the notice of informed consent and releases to publish photographs of recognizable persons, submit with the manuscript written permission to use non-original material (quotations exceeding 100 words, any table or illustration) from copyright holder of the original. No article will be accepted as a submission to Archives without all required permissions. Credit the source in a text or table footnote or in a legend.

A more complete description of each item that must be checked is provided under the appropriate heading in the Instructions for Authors.
I have reviewed this Checklist and have complied with its requirements.
Every author took a certain role and made contribution to the study and the manuscript. In case of publication, I agree to transfer all copyright ownership of the manuscript to the Korean Academy of Rehabilitation Medicine to use, reproduce, or distribute the article.

☐ Agree ☐ Disagree
Submission Application & Copyright Transfer Form

Date

Title of Manuscript

In signing this form:
1. The authors warrant that the article is original work which has not been published before, and is not being considered for publication elsewhere in its final form.
2. The authors concede that the article will be reviewed and may be edited by the Korean Academy of Rehabilitation Medicine (KARM).
3. The authors agree to transfer copyright of the article to the KARM upon publication in the Annals of Rehabilitation Medicine.

CORRESPONDING AUTHOR

<table>
<thead>
<tr>
<th>Name</th>
<th>Affiliation</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>E-mail</th>
<th>TEL</th>
<th>FAX</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Address</th>
<th>01</th>
<th>Author's name</th>
<th>Signature</th>
<th>Degree(s)</th>
<th>Affiliation</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>02</th>
<th>Author's name</th>
<th>Signature</th>
<th>Degree(s)</th>
<th>Affiliation</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>03</th>
<th>Author's name</th>
<th>Signature</th>
<th>Degree(s)</th>
<th>Affiliation</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>04</th>
<th>Author's name</th>
<th>Signature</th>
<th>Degree(s)</th>
<th>Affiliation</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>05</th>
<th>Author's name</th>
<th>Signature</th>
<th>Degree(s)</th>
<th>Affiliation</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>06</th>
<th>Author's name</th>
<th>Signature</th>
<th>Degree(s)</th>
<th>Affiliation</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>07</th>
<th>Author's name</th>
<th>Signature</th>
<th>Degree(s)</th>
<th>Affiliation</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>08</th>
<th>Author's name</th>
<th>Signature</th>
<th>Degree(s)</th>
<th>Affiliation</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>09</th>
<th>Author's name</th>
<th>Signature</th>
<th>Degree(s)</th>
<th>Affiliation</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

www.e-arm.org