Citations
Citations
Citations
Citations
Citations
Citations
Citations
Citations
To investigate the effects of real repetitive peripheral magnetic stimulation (rPMS) treatment compared to sham rPMS treatment on pain reduction and functional recovery of patients with acute low back pain.
A total of 26 patients with acute low back pain were randomly allocated to the real rPMS group and the sham rPMS group. Subjects were then administered a total of 10 treatment sessions. Visual analogue scale (VAS) was assessed before and after each session. Oswestry Disability Index (ODI) and Roland-Morris Disability Questionnaire (RMDQ) were employed to assess functional recovery at baseline and after sessions 5 and 10.
Real rPMS treatment showed significant pain reduction immediately after each session. Sustained and significant pain relief was observed after administering only one session in the real rPMS group. Significant functional improvement was observed in the real rPMS group compared to that in the sham rPMS group after sessions 5 and 10 based on ODI and after session 5 based on RMDQ.
Real rPMS treatment has immediate effect on pain reduction and sustained effect on pain relief for patients with acute low back pain compared to sham rPMS.
Citations
To investigate the effects of repetitive peripheral magnetic stimulation (rPMS) on the vastus lateralis (VL) in the early stage after hip replacement surgery.
Twenty-two patients who underwent hip replacement after proximal femur fracture were included in this study. After hip surgery, the experimental group was applied with 15 sessions of 10 Hz rPMS over the VL 5 times per week for 3 weeks, while the control group took sham stimulation. All patients were also given conventional physical therapy. The VL strength was measured with the root mean square (RMS) value of the VL with surface electromyography technique. The ratio of RMS values between fractured and unfractured legs and tandem stand test were used to assess standing balance. Usual gait speed was measured to evaluate gait function. Pain in two groups was assessed with visual analog scale (VAS).
Both RMS value of the VL and the ratio of RMS values after rPMS were significantly improved (p<0.05). Also, tandem standing time and usual gait speed in rPMS group were dramatically increased (p<0.05). However, no significant difference in VAS was found between the two groups after 3 weeks.
rPMS on the VL improved muscle strength, standing balance and gait function in the early stage after hip surgery. Therefore, rPMS could be applied to patients who cannot take electrical stimulation due to pain and an unhealed wound.
Citations
A 57-year-old man who was diagnosed with Wernicke-Korsakoff syndrome showed severe impairment of cognitive function and a craving for alcohol, even after sufficient supplementation with thiamine. After completing 10 sessions of 10 Hz repetitive transcranial magnetic stimulation (rTMS) at 100% of the resting motor threshold over the left dorsolateral prefrontal cortex, dramatic improvement in cognitive function and a reduction in craving for alcohol were noted. This is the first case report of the efficacy of a high-frequency rTMS in the treatment of Wernicke-Korsakoff syndrome.
Citations
To assess the efficacy of high-frequency repetitive transcranial magnetic stimulation (rTMS) on balance function in patients with chronic stroke.
Thirty participants with chronic stroke were enrolled in this study. High frequency (10 Hz) rTMS was delivered with butterfly-coil on trunk motor spot. Each patient received both real and sham rTMS in a random sequence. The rTMS cycles (real or sham) were composed of 10 sessions each, administered over two weeks, and separated by a 4-week washout period. Balance function was measured by Berg Balance Scale and computerized dynamic posturography to determine the effect of rTMS before and one day after the end of each treatment period, as well as at a 1-month follow-up.
The balance function was significantly improved after high frequency rTMS as compared with that after sham rTMS (p<0.05). There was no serious adverse effect in patients during the treatment period.
In the chronic stroke patients, high frequency rTMS to the trunk motor area seems to be a helpful way to improve balance function without any specific adverse effects. Further studies are needed to identify the underlying mechanism and generate a detailed protocol.
Citations
To investigate the clinical significance of quantitative parameters in transcranial magnetic stimulation (TMS)-induced motor evoked potentials (MEP) which can be adopted to predict functional recovery of the upper limb in stroke patients in the early subacute phase.
One hundred thirteen patients (61 men, 52 women; mean age 57.8±12.2 years) who suffered faiarst-ever stroke were included in this study. All participants underwent TMS-induced MEP session to assess the corticospinal excitability of both hand motor cortices within 3 weeks after stroke onset. After the resting motor threshold (rMT) was assessed, five sweeps of MEP were performed, and the mean amplitude of the MEP was measured. Latency of MEP, volume of the MEP output curve, recruitment ratios, and intracortical inhibition and facilitation were also measured. Motor function was assessed using the Fugl-Meyer Assessment scale (FMA) within 3 weeks and at 3 months after stroke onset. Correlation analysis was performed between TMS-induced MEP derived measures and FMA scores.
In the MEP response group, rMT and rMT ratio measures within 3 weeks after stroke onset showed a significant negative correlation with the total and upper limb FMA scores at 3 months after stroke (p<0.001). Multiple regression analysis revealed that FMA score and rMT ratio, but not rMT within 3 weeks were independent prognostic factors for FMA scores at 3 months after stroke.
These results indicated that the quantitative parameter of TMS-induced MEP, especially rMT ratio in the early subacute phase, could be used as a parameter to predict motor function in patients with stroke.
Citations
To investigate the effects of using motor imagery (MI) in combination with a virtual reality (VR) program on healthy volunteers and stroke patients. In addition, this study investigated whether task variability within the VR-guided MI programs would influence corticomotor excitability.
The present study included 15 stroke patients and 15 healthy right-handed volunteers who were presented with four different conditions in a random order: rest, MI alone, VR-guided MI, and VR-guided MI with task variability. The corticomotor excitability of each participant was assessed before, during, and after each condition by measuring changes in the various parameters of motor-evoked potentials (MEPs) of the extensor carpi radials (ECR). Changes in intracortical inhibition (ICI) and intracortical facilitation (ICF) were calculated after each condition as percentages of inhibition (%INH) and facilitation (%FAC) at rest.
In both groups, the increases in MEP amplitudes were greater during the two VR-guided MI conditions than during MI alone. Additionally, the reductions in ECR %INH in both groups were greater under the condition involving VR-guided MI with task variability than under that involving VR-guided MI with regular interval.
The corticomotor excitability elicited by MI using a VR avatar representation was greater than that elicited by MI with real body observations. Furthermore, the use of task variability in a VR program may enhance neural regeneration after stroke by reducing ICI. The present findings support the use of various VR programs as well as the concept of combining MI with VR programs for neurorehabilitation.
Citations
To investigate the factors related to upper extremity functional improvement following inhibitory repetitive transcranial magnetic stimulation (rTMS) in stroke patients.
Forty-one stroke patients received low-frequency rTMS over the contralesional hemisphere according to a standard protocol, in addition to conventional physical and occupational therapy. The rTMS-treated patients were divided into two groups according to their responsiveness to rTMS measured by the self-care score of the Korean version of Modified Barthel Index (K-MBI): responded group (n=19) and non-responded group (n=22). Forty-one age-matched stroke patients who had not received rTMS served as controls. Neurological, cognitive and functional assessments were performed before rTMS and 4 weeks after rTMS treatment.
Among the rTMS-treated patients, the responded group was significantly younger than the non-responded group (51.6±10.5 years and 65.5±13.7 years, respectively; p=0.001). Four weeks after rTMS, the National Institutes of Health Stroke Scale, the Brunnstrom recovery stage and upper extremity muscle power scores were significantly more improved in the responded group than in the control group. Besides the self-care score, the mobility score of the K-MBI was also more improved in the responded group than in the non-responded group or controls.
Age is the most obvious factor determining upper extremity functional responsiveness to low-frequency rTMS in stroke patients.
Citations
To investigate the clinical significance of upper and lower extremity transcranial magnetic stimulation (TMS)-induced motor evoked potentials (MEPs) in patients with parkinsonism.
Twenty patients (14 men, 6 women; mean age 70.5±9.1 years) suffering from parkinsonism were included in this study. All participants underwent single-pulse TMS session to assess the corticospinal excitability of the upper and lower extremity motor cortex. The resting motor threshold (RMT) was defined as the lowest stimulus intensity able to evoke MEPs of an at least 50 µV peak-to-peak amplitude in 5 of 10 consecutive trials. Five sweeps of MEPs at 120% of the RMT were performed, and the mean amplitude and latency of the MEPs were calculated. Patients were also assessed using the Unified Parkinson's Disease Rating Scale part III (UPDRS-III) and the 5-meter Timed Up and Go (5m-TUG) test.
There was a significant positive correlation between the RMTs of MEPs in the upper and lower extremities (r=0.612, p=0.004) and between the amplitude of MEPs in the upper and lower extremities (r=0.579, p=0.007). The RMT of upper extremity MEPs showed a significant negative relationship with the UPDRS-III score (r=–0.516, p=0.020). In addition, RMTs of lower extremity MEPs exhibited a negative relationship with the UPDRS-III score, but the association was not statistically significant (r=–406, p=0.075).
These results indicated that the RMT of MEPs reflect the severity of motor dysfunction in patients with parkinsonism. MEP is a potential quantitative, electrodiagnostic method to assess motor function in patients with parkinsonism.
Citations
To evaluate whether repetitive transcranial magnetic stimulation (rTMS) could improve dysarthria in stroke patients at the subacute stage.
This study was a prospective, randomized, double-blind controlled trial. Patients who had unilateral middle cerebral artery infarction were enrolled. In patients in the rTMS group, we found hot spots by searching for the evoked motor potential of the orbicularis oris on the non-affected side. We performed rTMS at a low frequency (1 Hz), 1,500 stimulations/day, 5 days a week for 2 weeks on the hotspots. We used the same protocol in the sham stimulation group patients as that in the rTMS group, except that the angle of the coil was perpendicular to the skull rather than tangential to it. The patients in both groups received speech therapy for 30 minutes, 5 days a week from a skilled speech therapist. The speech therapist measured the Urimal Test of Articulation and Phonology, alternative motion rates, sequential motion rates, and maximal phonation time before and after intervention sessions.
Forty-two patients were enrolled in this study and 20 completed the study. Statistical analysis revealed significant improvements on the dysarthria scales in both groups. The sequential motion rate (SMR)-PǝTǝKǝ showed significantly greater improvement in the rTMS group patients than in the sham stimulation group.
Patients in the rTMS group showed greater improvement in articulation than did patients in the sham rTMS group. Therefore, rTMS can have a synergistic effect with speech therapy in treating dysarthria after stroke.
Citations
A 37-year-old man with a right transfemoral amputation suffered from severe phantom limb pain (PLP). After targeting the affected supplementary motor complex (SMC) or primary motor cortex (PMC) using a neuro-navigation system with 800 stimuli of 1 Hz repetitive transcranial magnetic stimulation (rTMS) at 85% of resting motor threshold, the 1 Hz rTMS over SMC dramatically reduced his visual analog scale (VAS) of PLP from 7 to 0. However, the 1 Hz rTMS over PMC failed to reduce pain. To our knowledge, this is the first case report of a successfully treated severe PLP with a low frequency rTMS over SMC in affected hemisphere.
Citations
To determine the predictability of motor evoked potentials (MEP) in patients with putaminal hemorrhage (PH) according to the time of MEP from the onset of stroke.
Sixty consecutive patients with PH from January 2006 to November 2013 were retrospectively reviewed. Motor function of affected extremities was measured at onset time and at six months after the onset. Patients were classified into two groups according to the time of MEP from the onset of stroke: early MEP group (within 15 days from onset) and late MEP group (16-30 days from onset). Patients were also classified into two groups according to the presence of MEP on the affected abductor pollicis brevis (APB): MEP (+) group-patients (showing MEP in the affected APB) and MEP (-) group-patients (no MEP in the affected APB). Motor outcome was compared between the two early and late MEP groups or between the presence and absence of MEP in the affected APB groups.
For patients with MEP (+), a larger portion in the late MEP group showed good prognosis compared to the early MEP group (late MEP, 94.4%; early MEP, 80%). In contrast, in patients with MEP (-), a larger portion of patients in the late MEP group showed bad prognosis compared to the early MEP group (late MEP, 80%; early MEP, 71.4%). No significant improvement of MI between MEP (+) and MEP (-) was observed when MEP was performed early or late.
Our results revealed that the predictability of motor outcome might be better if MEP is performed late compared to that when MEP is performed early in patients with PH.
Citations
To investigate the effect of repetitive transcranial magnetic stimulation (rTMS) according to the stimulation site in subacute stroke patients with dysphagia.
This study was designed as a matched comparative study. Twenty-four patients who had dysphagia after ischemic stroke were recruited, and they were divided into two groups after matching for age and stroke lesion. The patients in group A received rTMS over the brain cortex where motor evoked potential (MEP) was obtained from the suprahyoid muscle. Group B received rTMS over the brain cortex where MEP was obtained from the abductor pollicis brevis muscle. rTMS was performed at 110% of MEP threshold, 10 Hz frequency for 10 seconds, and then repeated every minute for 10 minutes. Dysphagia status was measured by the Functional Dysphagia Scale (FDS), the Penetration-Aspiration Scale (PAS), and the Dysphagia Outcome and Severity Scale (DOSS) using the results of a videofluoroscopic swallowing study. These evaluations were measured before, immediately, and 4 weeks after rTMS.
Group A showed significant improvement compared to group B in the DOSS score immediately and 4 weeks after rTMS. There were no significant differences in the changes of FDS and PAS scores between groups A and B immediately and 4 weeks after rTMS.
rTMS over a hot spot for the suprahyoid muscle caused more improvement in swallowing function when compared to that over the interconnected site.
Citations
To evaluate the effects of epidural electrical stimulation (EES) and repetitive transcranial magnetic stimulation (rTMS) on motor recovery and brain activity in a rat model of diffuse traumatic brain injury (TBI) compared to the control group.
Thirty rats weighing 270-285 g with diffuse TBI with 45 kg/cm2 using a weight-drop model were assigned to one of three groups: the EES group (ES) (anodal electrical stimulation at 50 Hz), the rTMS group (MS) (magnetic stimulation at 10 Hz, 3-second stimulation with 6-second intervals, 4,000 total stimulations per day), and the sham-treated control group (sham) (no stimulation). They were pre-trained to perform a single-pellet reaching task (SPRT) and a rotarod test (RRT) for 14 days. Diffuse TBI was then induced and an electrode was implanted over the dominant motor cortex. The changes in SPRT success rate, RRT performance time rate and the expression of c-Fos after two weeks of EES or rTMS were tracked.
SPRT improved significantly from day 8 to day 12 in the ES group and from day 4 to day 14 in the MS group (p<0.05) compared to the sham group. RRT improved significantly from day 6 to day 11 in ES and from day 4 to day 9 in MS compared to the sham group. The ES and MS groups showed increased expression of c-Fos in the cerebral cortex compared to the sham group.
ES or MS in a rat model of diffuse TBI can be used to enhance motor recovery and brain activity.
Citations
To determine factors associated with motor recovery of the upper extremity after repetitive transcranial magnetic stimulation (rTMS) treatment in stroke patients.
Twenty-nine patients with subacute stroke participated in this study. rTMS was applied to the hand motor cortex for 10 minutes at a 110% resting motor threshold and 10 Hz frequency for two weeks. We evaluated the biographical, neurological, clinical, and functional variables, in addition to the motor-evoked potential (MEP) response. The Manual Function Test (MFT) was performed before, immediately after, and two weeks after, the treatment. Patients were divided into a responder and non-responder group according to their respective improvements on the MFT. Data were compared between the two groups.
Patients with exclusively subcortical stroke, absence of aphasia, the presence of a MEP response, high scores on the Mini-Mental Status Examination, Motricity Index arm score, Functional Independence Measure, and Functional Ambulatory Classification; and a shorter period from stroke onset to rTMS were found to be significantly associated with a response to rTMS.
The results of this study suggest that rTMS may have a greater effect on upper extremity motor recovery in stroke patients who have a MEP response, suffer an exclusively subcortical stroke, mild paresis, and have good functional status. Applying rTMS early would have additional positive effects in the patients with the identified characteristics.
Citations
To delineate whether cortical plasticity induced by continuous theta burst stimulation (cTBS) differed according to catechol-O-methyltransferase (
Eighteen healthy older volunteers (mean age 73.78±5.04; 12 females and 6 males) were recruited. Volunteers randomly assigned in either a sham-first or real cTBS first group participated in two separate TMS visits with at least a 2-day wash-out period. Genotyping was carried out at baseline by a separate researcher who was blinded. cTBS was delivered in a hot spot over M1 at an active motor threshold of 80%. Motor evoked potentials (MEPs) were obtained at 120% of the resting motor threshold before and after sham/cTBS.
The relative MEP to baseline was significantly decreased 0 and 10 minutes post-stimulation and increased 40 minutes post-stimulation, as compared with the sham condition. Immediately after cTBS, the Val/Val group had a significantly reduced relative MEP value, as compared with the MET carrier group.
In healthy older persons, cTBS-induced motor plasticity was reduced in the COMT Val/Val group as compared with the 158Met carrier group.
Citations
To investigate the effect of low-frequency repetitive transcranial magnetic stimulation (rTMS) and neuromuscular electrical stimulation (NMES) on post-stroke dysphagia.
Subacute (<3 months), unilateral hemispheric stroke patients with dysphagia were randomly assigned to the conventional dysphagia therapy (CDT), rTMS, or NMES groups. In rTMS group, rTMS was performed at 100% resting motor threshold with 1 Hz frequency for 20 minutes per session (5 days per week for 2 weeks). In NMES group, electrical stimulation was applied to the anterior neck for 30 minutes per session (5 days per week for 2 weeks). All three groups were given conventional dysphagia therapy for 4 weeks. We evaluated the functional dysphagia scale (FDS), pharyngeal transit time (PTT), the penetration-aspiration scale (PAS), and the American Speech-Language Hearing Association National Outcomes Measurement System (ASHA NOMS) swallowing scale at baseline, after 2 weeks, and after 4 weeks.
Forty-seven patients completed the study; 15 in the CDT group, 14 in the rTMS group, and 18 in the NMES group. Mean changes in FDS and PAS for liquid during first 2 weeks in the rTMS and NMES groups were significantly higher than those in the CDT group, but no significant differences were found between the rTMS and NMES group. No significant difference in mean changes of FDS and PAS for semi-solid, PTT, and ASHA NOMS was observed among the three groups.
These results indicated that both low-frequency rTMS and NMES could induce early recovery from dysphagia; therefore, they both could be useful therapeutic options for dysphagic stroke patients.
Citations
Effectiveness of Neuromuscular Electrical Stimulation on Post-Stroke Dysphagia: A Systematic Review of Randomized Controlled Trials
To compare the low frequency (1 Hz) repetitive transcranial magnetic stimulation (rTMS) with high frequency (20 Hz) rTMS on motor functional improvement of the affected upper extremity in subacute stroke patients.
Forty patients with subacute ischemic stroke participated in this study. The first group received 10 sessions of 20 Hz rTMS at ipsilesional M1 area and the other group received 10 sessions of 1 Hz rTMS at contralesional M1 area. Motor training of the hemiparetic hand was conducted after each rTMS train. All the patients received conventional occupational therapy immediately after each rTMS session. Manual function test (MFT), Fugl-Meyer Assessment scale (FMS), Modified Barthel Index (MBI), Brunnstrom recovery stage, and grip strength were used to assess motor function before, at the end of, and one month after the last session of rTMS.
No adverse side effects were reported during the course of the experiment using rTMS. No significant difference in motor function of the affected upper extremity was observed between the two groups before rTMS. Significant improvements in MFT, FMS, MBI, and Brunnstrom stage were observed in the both groups at the end of the last rTMS session and one month later (p<0.05). No significant difference was found between the two groups (p>0.05).
There was no significant difference in motor function of the affected upper extremity between 1 Hz and 20 Hz rTMS during the subacute period of ischemic stroke. Thus, we cannot conclude which has a greater effect.
Citations
To investigate the effects of simultaneous, bihemispheric, dual-mode stimulation using repetitive transcranial magnetic stimulation (rTMS) and transcranial direct current stimulation (tDCS) on motor functions and cortical excitability in healthy individuals.
Twenty-five healthy, right-handed volunteers (10 men, 15 women; mean age, 25.5 years) were enrolled. All participants received four randomly arranged, dual-mode, simultaneous stimulations under the following conditions: condition 1, high-frequency rTMS over the right primary motor cortex (M1) and sham tDCS over the left M1; condition 2, high-frequency rTMS over the right M1 and anodal tDCS over the left M1; condition 3, high-frequency rTMS over the right M1 and cathodal tDCS over the left M1; and condition 4, sham rTMS and sham tDCS. The cortical excitability of the right M1 and motor functions of the left hand were assessed before and after each simulation.
Motor evoked potential (MEP) amplitudes after stimulation were significantly higher than before stimulation, under the conditions 1 and 2. The MEP amplitude in condition 2 was higher than both conditions 3 and 4, while the MEP amplitude in condition 1 was higher than condition 4. The results of the Purdue Pegboard test and the box and block test showed significant improvement in conditions 1 and 2 after stimulation.
Simultaneous stimulation by anodal tDCS over the left M1 with high-frequency rTMS over the right M1 could produce interhemispheric modulation and homeostatic plasticity, which resulted in modulation of cortical excitability and motor functions.
Citations
Videofluoroscopic swallowing study (VFSS) used for the diagnosis of dysphagia has limitations in objectively assessing the contractility of the pharyngeal muscle or the degree of the upper esophageal sphincter relaxation. With a manometer, however, it is possible to objectively assess the pressure changes in the pharynx caused by pharyngeal muscle contraction during swallowing or upper esophageal sphincter relaxation, hence remedying the limitations of VFSS. The following case report describes a patient diagnosed with lateral medullar infarction presenting a 52-year-old male who had dysphagia. We suggested that the manometer could be used to assess the specific site of dysfunction in patients with dysphagia complementing the limitations of VFSS. We also found that repetitive transcranial magnetic stimulation was effective in treating patients refractory to traditional dysphagia rehabilitation.
Citations
To examine the neurophysiologic status in patients with idiopathic facial nerve palsy (Bell's palsy) and Ramsay Hunt syndrome (herpes zoster oticus) within 7 days from onset of symptoms, by comparing the amplitude of compound muscle action potentials (CMAP) of facial muscles in electroneuronography (ENoG) and transcranial magnetic stimulation (TMS).
The facial nerve conduction study using ENoG and TMS was performed in 42 patients with Bell's palsy and 14 patients with Ramsay Hunt syndrome within 7 days from onset of symptoms. Denervation ratio was calculated as CMAP amplitude evoked by ENoG or TMS on the affected side as percentage of the amplitudes on the healthy side. The severity of the facial palsy was graded according to House-Brackmann facial grading scale (H-B FGS).
In all subjects, the denervation ratio in TMS (71.53±18.38%) was significantly greater than the denervation ratio in ENoG (41.95±21.59%). The difference of denervation ratio between ENoG and TMS was significantly smaller in patients with Ramsay Hunt syndrome than in patients with Bell's palsy. The denervation ratio of ENoG or TMS did not correlated significantly with the H-B FGS.
In the electrophysiologic study for evaluation in patients with facial palsy within 7 days from onset of symptoms, ENoG and TMS are useful in gaining additional information about the neurophysiologic status of the facial nerve and may help to evaluate prognosis and set management plan.
Citations
Central pontine myelinolysis is a rare neurologic disorder that is defined by demyelination of longitudinally descending tracts and transversly crossing fibers in the basis pontis. Frequently observed clinical manifestations of this disorder include sudden weakness, dysphagia, loss of consciouness and locked-in syndrome. However, there have been a few studies that reported a benign course of this disease, which include cerebellar signs, such as ataxia, intention tremor, and dysarthria. Here we report on a 53-year-old male with a history of liver cirrhosis who showed the cerebellar type of central pontine myelinolysis. The patient was diagnosed with central pontine myelinolysis based on clinical presentations and magnetic resonance imaging findings after a liver transplantation. Conventional magenetic resonance imaging (MRI) revealed the preservation of the corticospinal tract and abnormal pontocerebellar fibers. However, these findings were not sufficient to define the pathophysiology of our patient. Electrophysiologic analysis and diffusion tensor imaging (DTI) were performed to investigate cerebellar signs in this case. Delayed central motor conduction time (CMCT) to the tibialis anterior muscle with transcranial magnetic stimulation (TMS) was observed, which indicated demyelination of the corticospinal tract. Also, diffusion tensor imaging showed abnormal pontocerebellar fibers, which might have been caused by cerebellar dysfunction in our patient. A combination of TMS and DTI was also used to determine the pathophysiology of this disease.
Citations
To examine whether the pattern of brain activation induced by a motor task and the motor responses to transcranial magnetic stimulation (TMS) have prognostic implications for motor recovery after stroke.
Ten patients with first-ever subcortical stroke (55.7±17.3 years, 5 ischemic and 5 hemorrhagic) underwent 2 FDG PET studies under different conditions (1: rest, 2: activation with a specific motor task) at 37.7±25.2 days after stroke. The regions showing more than a 10% increase in glucose metabolism on subtraction images during activation and rest were considered to be significantly activated. Cortical excitability of intracortical inhibition (ICI) and intracortical facilitation (ICF) were assessed using the TMS from both abductor pollicis brevis muscles within 7 days of PET scans. Recovery of motor function was assessed at the point of the neurological plateau.
The presence of a motor response at the plegic site to TMS and normal intracortical inhibition, and facilitation patterns in the unaffected hemisphere were found to be related to good recovery. An association between an ipsilesional activation on PET and good motor recovery was also observed, but this was significantly weaker than that between TMS measured cortical excitability and motor recovery.
Integrity of the ipsilesional corticospinal pathway, normalized contralesional intracortical excitability, and task-related activation in the ipsilesional hemisphere were found to predict post-stroke motor recovery significantly.
Citations