Citations
Citations
Citations
Citations
Citations
To determine the age-related changes in cardiac rehabilitation (CR) outcomes, which includes hemodynamic and metabolic factors, in patients with myocardial infarction (MI).
CR was administered for 8 weeks to 32 men (mean age, 54.0±8.8 years) who underwent percutaneous coronary intervention for acute MI between July 2012 and January 2016. The exercise tolerance tests were performed before and after the CR. The results were stratified based on a cut-off age of 55 years.
In the whole patient group, the hemodynamic variables such as the resting heart rate (HRrest), systolic blood pressure (SBPrest), submaximal HR (HRsubmax), SBP (SBPsubmax), and rate pressure product (RPPsubmax) significantly decreased and the maximal HR (HRmax) and RPP (RPPmax) significantly increased. All metabolic variables displayed significant improvement, to include maximal oxygen consumption (VO2max) and ventilation (VEmax), anaerobic threshold (AT), and the maximal oxygen pulse (O2pulsemax). However, upon stratification by age, those who were younger than 55 years of age exhibited significant changes only in the HRrest and RPPsubmax and those aged 55 years old or greater displayed significant changes in all hemodynamic variables except diastolic BP. Both groups displayed significant increases in the VO2max, VEmax, and AT; the older group also exhibited a significant increase in O2pulsemax. The magnitude of the changes in the hemodynamic and metabolic variables before and after CR, based on age, did not differ between the groups; although, it tended to be greater among the older participants of this study's sample.
Because the older participants tended to show greater hemodynamic and metabolic changes due to CR, a more aggressive CR program must be administered to elderly patients with MI.
Citations
To determine whether heart rate recovery (HRR) following an exercise tolerance test (ETT) is correlated with a changing ratio of peak oxygen consumption (VO2) and maximal metabolic equivalents (METmax).
A total of 60 acute myocardial infarction (AMI) patients who underwent ETT at both assessment points - 3 weeks (T0) after the AMI attack and 3 months after T0 (T1) were included. After achieving a peak workload, the treadmill was stopped with a 5-minute cooldown period, and the patients recovered in a comfortable and relaxed seated position. HRR was defined as the difference between the maximal heart rate (HRmax) and the HR measured at specific time intervals - immediately after the cool down period (HRR-0) and 3 minutes after the completion of the ETT (HRR-3).
HRR-0 and HRR-3 increased over time, whereas VO2max and METmax did not show significant changes. There was a positive correlation between HRR at T0 and the exercise capacity at T0. HRR at T0 also showed a positive correlation with the exercise capacity at T1. There was no significant correlation between HRR measured at T0 and the change in the ratio of VO2max and METmax, as calculated by subtracting VO2max and METmax obtained at T0 from those obtained at T1, divided by VO2max at T0 and multiplied by 100.
Post-exercise HRR measured at 3 weeks after the AMI onset can reflect the exercise capacity 3 months after the first ETT. However, it may be difficult to correlate post-exercise HRR at T0 with the degree of increase in cardiopulmonary exercise capacity in patients with AMI.
Citations
To explore the feasibility of cardiopulmonary exercise test (CPET) in leukemia patients after chemotherapy.
Leukemia patients with histologically confirmed hematologic malignancies were reviewed. We evaluated for CPET, between receiving chemotherapy and undergoing stem cell transplantation after 2 weeks. We recorded exercise testing and physiologic parameters during CPET between January 2013 to May 2015. All patients were subjected to symptoms limited to exercise testing, according to the Modified Bruce Protocol. We considered that if respiratory exchange ratio achieved was over 1.10, participants had successfully completed CPET. We dichotomized all participants into two groups (normal group, normal range of resting heart rate; higher group, over 100 per minute of heart rate).
30 patients were finally enrolled. All participants had no adverse effects during the exercise test. Mean peak double product was 26,998.60 mmHg·beats/min (range, 15,481–41,004), and mean peak oxygen consumption (VO2 peak) was 22.52±4.56 mL/kg/min. Significant differences were observed in the normal group with VO2 peak (mean, 24.21 mL/kg/min; p=0.027) and number of prior intensive chemotherapy, compared to the higher group (mean, 1.95; p=0.006).
Our results indicate that CPET in leukemia patients before stem cell transplantation was very safe, and is an efficient method to screen for patients with poor cardiac functions. As CPET presents the parameters which reveal the cardiopulmonary functions, including VO2 peak, double product and exercise capacity, this exercise test would help to predict the physical performance or general condition of the leukemia patients.
Citations
To investigate the real-time cardiovascular response to the progressive overload exercise in different levels of spinal cord injury (SCI), and to find out whether regular exercise has effect on these cardiovascular responses.
The study enrolled 8 able-bodied individuals in the control group plus 15 SCI subjects who were divided into two groups by their neurological level of injury: high-level SCI group (T6 or above) and low-level SCI group (T7 or below). Also, subjects were divided into exercise group and non-exercise group by usual exercise habits. We instructed the subjects to perform exercises using arm ergometer according to the protocol and checked plethysmograph for the real time assessment of blood pressure, heart rate, and cardiac output.
Six subjects were included in high-level SCI group (3 cervical, 3 thoracic injuries), 9 subjects in low-level SCI group (9 thoracic injuries), and 8 able-bodied individuals in control group. During arm ergometer-graded exercise, mean arterial pressure (MAP) was significantly lower in high-level SCI subjects of non-exercise group, compared with high-level SCI subjects of exercise group. In addition, HR was significantly higher in low-level SCI group compared with control group.
There are significant differences in mean arterial pressure of high-level SCI group according to usual exercise habits. We discovered that even in non-athlete high-level SCI, regular exercise can bring cardiac modulation through blood pressure control.
Citations
To compare and analyze the effects of cardiac rehabilitation (CR) in two groups based on the peak respiratory exchange ratio (RERpeak) 1.1 values using the exercise tolerance test (ETT) results, and to investigate the reasons for early termination of ETT.
Patients with acute coronary syndrome who participated in CR exercise training were selected and all subjects underwent 6 weeks of CR exercise training. ETT was performed on a treadmill using a Modified Bruce Protocol before and after CR exercise training. According to the result of the first ETT, the subjects were divided into two groups: those with an RERpeak≥1.1 (n=33) and those with an RERpeak<1.1 (n=22). We investigated the reasons for ETT termination and compared the effect of CR between the groups.
The reasons for the early termination of the first ETT in the RERpeak<1.1 group were subjective dyspnea, abnormal cardiovascular responses, leg fatigue and other problems. After a 6-week CR, the peak oxygen consumption (VO2peak) and ETT time increased, and the rate of perceived exertion (RPE) and RPP (rate pressure product) at stage 3 decreased in both the RERpeak<1.1 and RERpeak≥1.1 groups.
CR exercise training improved exercise capacity, not only in the RERpeak≥1.1 group, but also in the RERpeak<1.1 group. This means that patients with a lower exercise tolerance could also benefit from the effects of CR. Thoughtful consideration to identify the direct and indirect causes for the early termination of ETT would be necessary to improve the efficiency of CR.
Citations
To evaluate the effects of cardiac rehabilitation (CR) on functional capacity in obese and non-obese patients who have suffered acute myocardial infarction (AMI).
Overall, 359 patients who have suffered AMI, and were referred for CR after percutaneous coronary intervention from 2010 to 2015 and underwent an exercise tolerance test before and after phase II CR were included in this study. The patients were divided into two groups: obese group with body mass index (BMI) ≥25 kg/m2 (n=170; age, 54.32±9.98 years; BMI, 27.52±2.92 kg/m2) and non-obese group with BMI <25 kg/m2 (n=189; age, 59.12±11.50 years; BMI 22.86±2.01 kg/m2). The demographic characteristics and cardiopulmonary exercise capacity of all patients were analyzed before and after CR.
There were significant changes in resting heart rate (HRrest) before and after CR between the obese and non-obese groups (before CR, p=0.028; after CR, p=0.046), but other cardiopulmonary exercise capacity before and after CR was not different between the groups. HRrest (p<0.001), maximal metabolic equivalents (METs, p<0.001), total exercise duration (TED, p<0.001), and maximal oxygen consumption (VO2max, p<0.001) improved significantly in the obese and non-obese groups after CR. No difference in the change in the cardiopulmonary exercise capacity rate was detected between the groups.
CR may improve functional capacity in patients who suffered AMI regardless of their obesity.
Citations
To quantify changes in cardiopulmonary function using a lower body positive pressure supported (LBPPS) treadmill during the exercise tolerance test (ETT) in healthy subjects before applying the LBPPS treadmill in patients with gait problems.
We evaluated 30 healthy subjects who were able to walk independently. The ETT was performed using the Modified Bruce Protocol (stages 1–5) at four levels (0%, 40%, 60%, and 80%) of LBPPS. The time interval at each level of the LBPPS treadmill test was 20 minutes to recover to baseline status. We measured systolic blood pressure, diastolic blood pressure, peak heart rate (PHR), rating of perceived exertion (RPE), metabolic equivalents (METs), and oxygen consumption rate (VO2) during each LBPPS condition.
Systolic blood pressure increased as the LBPPS level was increased (40% to 80%). PHR, RPE, METs, and VO2 were negatively associated with the LBPPS condition, although they were not always significant different among the LBPPS levels. The equation from a random effect linear regression model was as follows: VO2 (mL/kg/min)=(2.75×stage)+(–0.14×LBPPS level)+11.9 (r2=0.69).
Detection of the changes in physiological parameters during a submaximal ETT using the LBPPS system may be helpful for applying the LBPPS treadmill in patients who cannot perform the ETT due to gait problems, even at submaximal intensity.
Citations
To observe the effect and safety of cardiac rehabilitation (CR) exercise in ischemic cardiomyopathy and to compare the results between patients with preserved left ventricular ejection fraction (LVEF) and reduced LVEF.
Patients with ischemic cardiomyopathy with LVEF <50% were included as subjects. The patients were classified into the preserved LVEF (pLVEF; LVEF 41%–49%) group and the reduced LVEF (rLVEF; LVEF ≤40%) group. Patients underwent hourly aerobic exercise training sessions with an intensity of 60%–85% of heart rate reserve, three times a week for 6 weeks. Graded exercise test and transthoracic echocardiogram were performed in all study patients before and after completion of the CR exercise program.
After completion of the CR exercise program, both groups (pLVEF, n=30; rLVEF, n=18) showed significant increases in LVEF and VO2max. In the pLVEF group, LVEF and VO2max increased from 45.1%±4.8% to 52.5%±9.6% (p<0.001) and from 24.1±6.3 to 28.1±8.8 mL/kg/min (p=0.002), respectively. In the rLVEF group, LVEF and VO2max increased from 29.7%±7.7% to 37.6%±10.3% (p<0.001) and from 17.6±4.7 to 21.2±5.1 mL/kg/min (p<0.001), respectively. Both groups completed their exercise program safely.
In both groups, patients with ischemic cardiomyopathy who completed a 6-week supervised CR exercise program demonstrated remarkable improvements in cardiopulmonary function. This result implies that neither of the two groups showed higher efficacy in comparison to each other, but we can conclude that CR exercise in the rLVEF group was as effective and safe as that in the pLVEF group.
Citations
To investigate the long-term outcomes of cardiac rehabilitation (CR) on exercise capacity in diabetic (DM) and non-diabetic (non-DM) patients with myocardial infarction (MI).
Of the MI patients who received hospital-based CR from February 2012 to January 2014, we retrospectively reviewed the medical records of the patients who continued follow-up through the outpatient clinic and community-based self-exercise after CR. A total of 37 patients (12 with DM and 25 without DM) were included in this study. Exercise capacity was measured by symptom-limited exercise tests before and after hospital-based CR and 1 year after the onset of MI.
Before the CR, the DM group had significantly lower exercise capacity in exercise times, peak oxygen consumption (VO2peak), and metabolic equivalent tasks (METs) than did the non-DM group. After the CR, both groups showed significantly improved exercise capacity, but the DM group had significantly lower exercise capacity in exercise times, submaximal rate pressure products (RPPsubmax), VO2peak, and METs. One year after the onset of the MI, the DM group had significantly lower exercise capacity in exercise times, RPPsubmax, and VO2peak than did the non-DM group, and neither group showed a significant difference in exercise capacity between before and after the CR.
As a result of continued follow-up through an outpatient clinic and community-based self-exercise after hospital-based CR in patients with MI, the DM group still had lower exercise capacity than did the non-DM group 1 year after the onset of MI, but both groups maintained their improved exercise capacity following hospital-based CR.
Citations
The aim of this study is to exam the effects of exercise modes on the systolic blood pressure and rate-pressure product during a gradually increasing exercise load from low to high intensity.
Fifteen apparently healthy men aged 19 to 23 performed the graded exercise tests on cycle ergometer (CE) and treadmill (TM). During the low-to-maximal exercises, oxygen uptake (VO2), heart rate (HR), systolic blood pressure (SBP) and rate-pressure product were measured.
CE had a significantly lower maximum VO2 than TM (CE vs. TM: 48.51±1.30 vs. 55.4±1.19 mL/kg/min; p<0.001). However, CE showed a higher maximum SBP (SBPmax) at the all-out exercise load than TM (CE vs. TM: 170±2.4 vs. 154±1.7 mmHg; p<0.001). During the low-to-maximal intensity increment, the slope of the HR with VO2 was the same as VO2 increased in times of the graded exercise test of CE and TM (CE vs. TM: 2.542±0.100 vs. 2.506±0.087; p=0.26). The slope of increase on SBP accompanied by VO2 increase was significantly higher in CE than in TM (CE vs. TM: 1.669±0.117 vs. 1.179±0.063; p<0.001).
The SBP response is stronger in CE than in TM during the graded exercise test. Therefore, there is a possibility that CE could induce a greater burden on workloads to cardiovascular system in humans than TM.
Citations
To find out the predictive value of the ΣΔST/ΔHR index for restenosis after percutaneous coronary intervention (PCI).
Subjects of this research were patients who participated in a cardiac rehabilitation (CR) program as six to eight weeks of a hospital-based program after receiving PCI to treat acute coronary syndrome (ACS). The patients received coronary angiography (CAG) at the onset of the ACS and nine months after that, and also received an exercise tolerance test (ETT) at the start of the CR program and several days before receiving a follow-up CAG. In ETT, we used the sum of the ST depression (ΣΔST index) of leads II, III, aVF, V4-6 as well as the sum of the ΔST/ΔHR (heart rate) (ΣΔST/ΔHR index) in the same leads and the sum of the ΔST/ΔRPP (rate pressure product) (ΣΔST/ΔRPP index) in the same leads. We compared the predictive power of each index of ETT for restenosis after PCI.
The sensitivity, specificity, positive predictive value, and negative predictive value of ΣΔST index were 69%, 47%, 31%, and 82%. The ΣΔST/ΔHR index was 13.7±5.2 in the restenosis group and 9.3±5.6 in the patent group (p=0.017). The sensitivity, specificity, positive predictive value, and negative predictive value of this index were 85%, 63%, 44%, and 92%. The ΣΔST/ΔRPP index were 0.10±0.08 in the restenosis group and 0.06±0.04 in the patent group (p=0.016). The sensitivity, specificity, positive predictive value, and negative predictive value of this index were 54%, 76%, 44%, and 83%.
The ΣΔST/ΔHR index showed a much higher sensitivity and negative predictive value for restenosis after PCI compared to the ΣΔST index.
To examine the cardiorespiratory responses of patients with spinal cord injury (SCI) paraplegia using a motor driven rowing machine.
Ten SCI patients with paraplegia [A (n=6), B (n=1), and C (n=3) by the American Spinal Injury Association impairment scale] were selected. Two rowing techniques were used. The first used a fixed seat with rowing achieved using only upper extremity movement (fixed rowing). The second used an automatically moving seat, facilitating active upper extremity movement and passive lower extremity movement via the motorized seat (motor rowing). Each patient performed two randomly assigned rowing exercise stress tests 1-3 days apart. The work rate (WR), time, respiratory exchange ratio (R), oxygen consumption (VO2), heart rate (HR), metabolic equivalents (METs), and rating of perceived exertion (RPE) were recorded.
WR, time, VO2, and METs were significantly higher after the motor rowing test than after fixed motor rowing test (p<0.05). HR after motor rowing was significantly lower than fixed rowing (p<0.05).
Cardiorespiratory responses as VO2, HR and METs can be elicited by the motor rowing for people with paraplegic SCI.
Citations