Citations
Citations
Citations
The hypoglossal nerve (CN XII) may be placed at risk during posterior fossa surgeries. The use of intraoperative monitoring (IOM), including the utilization of spontaneous and triggered electromyography (EMG), from tongue muscles innervated by CN XII has been used to reduce these risks. However, there were few reports regarding the intraoperative transcranial motor evoked potential (MEP) of hypoglossal nerve from the tongue muscles. For this reason, we report here two cases of intraoperative hypoglossal MEP monitoring in brain surgery as an indicator of hypoglossal deficits. Although the amplitude of the MEP was reduced in both patients, only in the case 1 whose MEP was disappeared demonstrated the neurological deficits of the hypoglossal nerve. Therefore, the disappearance of the hypoglossal MEP recorded from the tongue, could be considered a predictor of the postoperative hypoglossal nerve deficits.
Citations
To investigate the neurodevelopmental outcomes in children with developmental disorder according to visual evoked potential (VEP) results.
We retrospectively analyzed children who visited our Department of Pediatric Rehabilitation Medicine with a chief complaint of developmental disability from January 2001 to July 2015. Of the 549 medical records reviewed, 322 children younger than 42 months who underwent both Bayley Scales of Infant and Toddler Development second edition (BSID-II) and VEP studies were enrolled. We compared the development of 182 children with normal VEP latency and 140 children with delayed VEP latency results using the BSID-II results. The Mann-Whitney U-test was used to analyze the differences between the two groups.
There were no significant differences in baseline characteristics between the two groups. The delayed VEP latency group showed a significant delay in BSID-II index scores and developmental quotients compared with the normal VEP latency group. In addition, a comparative analysis of developmental quotients of mental and psychomotor domains according to age (younger than 12 months, 12–23 months, and 24–42 months) revealed significantly lower values in children with delayed VEP latency compared to children with normal VEP latency, younger than 12 months and from 12 to 23 months.
Children with delayed VEP latency showed more developmental delay than children with normal VEP latency. It is suggested that VEP can be easily applied to children with suspected developmental delay when physicians have concerns about visual impairment. Furthermore, it is proposed that VEP results could provide an insight into children's development and serve as early indicators for consultation with an ophthalmologist for the existing problem.
Citations
Joubert syndrome (JS) is a rare genetic disorder characterized by a congenital malformation of the hindbrain, and accompanied by axonal decussation abnormalities affecting the corticospinal tract and the superior cerebellar peduncles. To the best of our knowledge, there are no reports of normal pyramidal decussation in JS. Here, we describe the case of an 18-year-old boy presenting midline-crossing corticospinal projections, which were considered normal corticospinal tract trajectories. Diffusion tensor imaging and motor evoked potential study analysis demonstrated the exclusive presence of decussating corticospinal projections in the patient. Based on these results, we suggest that JS might be associated with several, diverse corticospinal motor tract organization patterns.
To identify which combination of motor evoked potentials (MEPs) and somatosensory evoked potentials (SEPs) is most reliable for postoperative motor deterioration during spinal cord tumor surgery, according to anatomical and pathologic type.
MEPs and SEPs were monitored in patients who underwent spinal cord tumor surgery between November 2012 and August 2016. Muscle strength was examined in all patients before surgery, within 48 hours postoperatively and 4 weeks later. We analyzed sensitivity, specificity, positive and negative predictive values of each significant change in SEPs and MEPs.
The overall sensitivity and specificity of SEPs or MEPs were 100% and 61.3%, respectively. The intraoperative MEP monitoring alone showed both higher sensitivity (67.9%) and specificity (83.2%) than SEP monitoring alone for postoperative motor deterioration. Two patients with persistent motor deterioration had significant changes only in SEPs. There are no significant differences in reliabilities between anatomical types, except with hemangioma, where SEPs were more specific than MEPs for postoperative motor deterioration. Both overall positive and negative predictive values of MEPs were higher than the predictive values of SEPs. However, the positive predictive value was higher by the dual monitoring of MEPs and SEPs, compared to MEPs alone.
For spinal cord tumor surgery, combined MEP and SEP monitoring showed the highest sensitivity for the postoperative motor deterioration. Although MEPs are more specific than SEPs in most types of spinal cord tumor surgery, SEPs should still be monitored, especially in hemangioma surgery.
Citations
To investigate the relationship between motor evoked potential (MEP) response and the severity of motor paralysis, evaluated according to the Korean disability evaluation system in patients with spinal cord injury (SCI).
We analyzed 192 lower limbs of 96 SCI patients. Lower limbs were classified according to their motor scores, as determined by the International Standards for Neurological Classification of Spinal Cord Injury: motor score <10 (group 1); ≥10 and <15 (group 2); ≥15 and <20 (group 3); and ≥20 (group 4). MEP responses were classified as ‘normal’, ‘delayed’ or ‘absent’, based on their onset latency, which was compared between the different motor score groups.
MEP responses and limb motor scores were highly correlated (p<0.001). There was a significant difference of MEP responses between the motor score groups (p<0.001). MEP response was markedly poorer in motor group 1 (limb motor score <10) than in the other three groups (p<0.0001). However, there were no differences between the three groups with motor scores of 10 or above.
Clinical utility of MEP as a complimentary tool to manual muscle tests could be limited to discriminating motor score groups with severe paralysis, i.e., single lower limb motor power grades of 0 or 1, and from grade 2, 3, and 4, or above, in the Korean disability evaluation system.
Citations
To investigate the clinical significance of quantitative parameters in transcranial magnetic stimulation (TMS)-induced motor evoked potentials (MEP) which can be adopted to predict functional recovery of the upper limb in stroke patients in the early subacute phase.
One hundred thirteen patients (61 men, 52 women; mean age 57.8±12.2 years) who suffered faiarst-ever stroke were included in this study. All participants underwent TMS-induced MEP session to assess the corticospinal excitability of both hand motor cortices within 3 weeks after stroke onset. After the resting motor threshold (rMT) was assessed, five sweeps of MEP were performed, and the mean amplitude of the MEP was measured. Latency of MEP, volume of the MEP output curve, recruitment ratios, and intracortical inhibition and facilitation were also measured. Motor function was assessed using the Fugl-Meyer Assessment scale (FMA) within 3 weeks and at 3 months after stroke onset. Correlation analysis was performed between TMS-induced MEP derived measures and FMA scores.
In the MEP response group, rMT and rMT ratio measures within 3 weeks after stroke onset showed a significant negative correlation with the total and upper limb FMA scores at 3 months after stroke (p<0.001). Multiple regression analysis revealed that FMA score and rMT ratio, but not rMT within 3 weeks were independent prognostic factors for FMA scores at 3 months after stroke.
These results indicated that the quantitative parameter of TMS-induced MEP, especially rMT ratio in the early subacute phase, could be used as a parameter to predict motor function in patients with stroke.
Citations
To evaluate whether the combination of muscle motor evoked potentials (mMEPs) and somatosensory evoked potentials (SEPs) measured during spinal surgery can predict immediate and permanent postoperative motor deficits.
mMEP and SEP was monitored in patients undergoing spinal surgery between November 2012 and July 2014. mMEPs were elicited by a train of transcranial electrical stimulation over the motor cortex and recorded from the upper/lower limbs. SEPs were recorded by stimulating the tibial and median nerves.
Combined mMEP/SEP recording was successfully achieved in 190 operations. In 117 of these, mMEPs and SEPs were stable and 73 showed significant changes. In 20 cases, motor deficits in the first 48 postoperative hours were observed and 6 patients manifested permanent neurological deficits. The two potentials were monitored in a number of spinal surgeries. For surgery on spinal deformities, the sensitivity and specificity of combined mMEP/SEP monitoring were 100% and 92.4%, respectively. In the case of spinal cord tumor surgeries, sensitivity was only 50% but SEP changes were observed preceding permanent motor deficits in some cases.
Intraoperative monitoring is a useful tool in spinal surgery. For spinal deformity surgery, combined mMEP/SEP monitoring showed high sensitivity and specificity; in spinal tumor surgery, only SEP changes predicted permanent motor deficits. Therefore, mMEP, SEP, and joint monitoring may all be appropriate and beneficial for the intraoperative monitoring of spinal surgery.
Citations
To examine the association between motor evoked potentials (MEPs) in lower limbs and ambulatory outcomes of hemiplegic stroke patients.
Medical records of hemiplegic patients with the first ever stroke who received inpatient rehabilitation from January 2013 to May 2014 were reviewed. Patient who had diabetes, quadriplegia, bilateral lesion, brainstem lesion, severe musculoskeletal problem, and old age over 80 years were excluded. MEPs in lower limbs were measured when they were transferred to the Department of Rehabilitation Medicine. Subjects were categorized into three groups (normal, abnormal, and absent response) according to MEPs findings. Berg Balance Scale (BBS) and Functional Ambulation Category (FAC) at initial and discharge were compared among the three groups by one-way analysis of variance (ANOVA). Correlation was determined using a linear regression model.
Fifty-eight hemiplegic patients were included. BBS and FAC at discharge were significantly (ANOVA, p<0.001) different according to MEPs findings. In linear regression model of BBS and FAC using stepwise selection, patients' age (p<0.01), BBS at admission (p<0.01), and MEPs (p<0.01) remained significant covariates. In regression assumption model of BBS and FAC at admission, MEPs and gender were significant covariates.
Initial MEPs of lower limbs can prognosticate the ambulatory outcomes of hemiplegic patients.
Citations
To present a new stimulation method based on the use of a head-mounted display (HMD) during pattern reversal visual evoked potential (PR-VEP) testing and to compare variables of HMD to those of conventional cathode ray tube (CRT).
Twenty-three normal subjects without visual problems were recruited. PR-VEPs were generated using CRT or HMD stimuli. VEP outcome measures included latencies (N75, P100, and N145) and peak-to-peak amplitudes (N75–P100 and P100–N145). Subjective discomfort associated with HMD was determined using a self-administered questionnaire.
PR-VEPs generated by HMD stimuli showed typical triphasic waveforms, the components of which were found to be correlated with those obtained using conventional CRT stimuli. Self-administered discomfort questionnaires revealed that HMD was more comfortable in some aspects. It allowed subjects to concentrate better than CRT.
The described HMD stimulation can be used as an alternative to the standard CRT stimulation for PR-VEPs. PR-VEP testing using HMD has potential applications in clinical practice and visual system research because HMD can be used on a wider range of subjects compared to CRT.
Citations
To investigate the clinical significance of upper and lower extremity transcranial magnetic stimulation (TMS)-induced motor evoked potentials (MEPs) in patients with parkinsonism.
Twenty patients (14 men, 6 women; mean age 70.5±9.1 years) suffering from parkinsonism were included in this study. All participants underwent single-pulse TMS session to assess the corticospinal excitability of the upper and lower extremity motor cortex. The resting motor threshold (RMT) was defined as the lowest stimulus intensity able to evoke MEPs of an at least 50 µV peak-to-peak amplitude in 5 of 10 consecutive trials. Five sweeps of MEPs at 120% of the RMT were performed, and the mean amplitude and latency of the MEPs were calculated. Patients were also assessed using the Unified Parkinson's Disease Rating Scale part III (UPDRS-III) and the 5-meter Timed Up and Go (5m-TUG) test.
There was a significant positive correlation between the RMTs of MEPs in the upper and lower extremities (r=0.612, p=0.004) and between the amplitude of MEPs in the upper and lower extremities (r=0.579, p=0.007). The RMT of upper extremity MEPs showed a significant negative relationship with the UPDRS-III score (r=–0.516, p=0.020). In addition, RMTs of lower extremity MEPs exhibited a negative relationship with the UPDRS-III score, but the association was not statistically significant (r=–406, p=0.075).
These results indicated that the RMT of MEPs reflect the severity of motor dysfunction in patients with parkinsonism. MEP is a potential quantitative, electrodiagnostic method to assess motor function in patients with parkinsonism.
Citations
To compare diffusion tensor tractography (DTT) and motor evoked potentials (MEPs) for estimation of clinical status in patients in the subacute stage of stroke.
Patients with hemiplegia due to stroke who were evaluated using both DTT and MEPs between May 2012 and April 2015 were recruited. Clinical assessments investigated upper extremity motor and functional status. Motor status was evaluated using Medical Research Council grading and the Fugl-Meyer Assessment of upper limb and hand (FMA-U and FMA-H). Functional status was measured using the Modified Barthel Index (MBI). Patients were classified into subgroups according to DTT findings, MEP presence, fractional anisotropy (FA) value, FA ratio (rFA), and central motor conduction time (CMCT). Correlations of clinical assessments with DTT parameters and MEPs were estimated.
Fifty-five patients with hemiplegia were recruited. In motor assessments (FMA-U), MEPs had the highest sensitivity and negative predictive value (NPV) as well as the second highest specificity and positive predictive value (PPV). CMCT showed the highest specificity and PPV. Regarding functional status (MBI), FA showed the highest sensitivity and NPV, whereas CMCT had the highest specificity and PPV. Correlation analysis showed that the resting motor threshold (RMT) ratio was strongly associated with motor status of the upper limb, and MEP parameters were not associated with MBI.
DTT and MEPs could be suitable complementary modalities for analyzing the motor and functional status of patients in the subacute stage of stroke. The RMT ratio was strongly correlated with motor status.
Citations
Terson syndrome refers to oculocerebral syndrome of retinal and vitreous hemorrhage associated with spontaneous subarachnoid hemorrhage or all forms of intracranial bleeding. Recent observations have indicated that patients with spontaneous subarachnoid hemorrhage have an 18% to 20% concurrent incidence of retinal and vitreous hemorrhages with about 4% incidence of vitreous hemorrhage alone. Clinical ophthalmologic findings may have significant diagnostic and prognostic value for clinicians. Here we report a 45-year-old female patient who suffered from blurred vision after subarachnoid hemorrhage. She was diagnosed as Terson syndrome. After vitrectomy, she recovered with normal visual acuity which facilitated the rehabilitative process. We also performed visual evoked potentials to investigate abnormalities of visual dysfunction. Based on this case, we emphasize the importance of early diagnosis of Terson syndrome.
Citations
To determine the predictability of motor evoked potentials (MEP) in patients with putaminal hemorrhage (PH) according to the time of MEP from the onset of stroke.
Sixty consecutive patients with PH from January 2006 to November 2013 were retrospectively reviewed. Motor function of affected extremities was measured at onset time and at six months after the onset. Patients were classified into two groups according to the time of MEP from the onset of stroke: early MEP group (within 15 days from onset) and late MEP group (16-30 days from onset). Patients were also classified into two groups according to the presence of MEP on the affected abductor pollicis brevis (APB): MEP (+) group-patients (showing MEP in the affected APB) and MEP (-) group-patients (no MEP in the affected APB). Motor outcome was compared between the two early and late MEP groups or between the presence and absence of MEP in the affected APB groups.
For patients with MEP (+), a larger portion in the late MEP group showed good prognosis compared to the early MEP group (late MEP, 94.4%; early MEP, 80%). In contrast, in patients with MEP (-), a larger portion of patients in the late MEP group showed bad prognosis compared to the early MEP group (late MEP, 80%; early MEP, 71.4%). No significant improvement of MI between MEP (+) and MEP (-) was observed when MEP was performed early or late.
Our results revealed that the predictability of motor outcome might be better if MEP is performed late compared to that when MEP is performed early in patients with PH.
Citations
To investigate the association between baseline motor evoked potential (MEP) and somatosensory evoked potential (SSEP) responses in the lower extremities and balance recovery in subacute hemiparetic stroke patients.
MEPs and SSEPs were evaluated in 20 subacute hemiparetic stroke patients before rehabilitation. Balance (static posturography and Berg Balance Scale [BBS]), motor function (Fugl-Meyer Assessment [FMA]) and the ability to perform activities of daily living (Modified Barthel Index [MBI]) were evaluated before rehabilitation and after four-weeks of rehabilitation. Posturography outcomes were weight distribution indices (WDI) expressed as surface area (WDI-Sa) and pressure (WDI-Pr), and stability indices expressed as surface area (SI-Sa) and length (SI-L). In addition, all parameters were evaluated during eyes open (EO) and eyes closed (EC) conditions.
The MEP (+) group showed significant improvements in balance except WDI-Sa (EC), FMA, and MBI, while the MEP (-) group showed significant improvements in the BBS, FMA, and MBI after rehabilitation. The SSEP (+) group showed significant improvements in balance except SI-Sa (EO), FMA, and MBI, while the SSEPs (-) group showed significant improvements in the BBS, MBI after rehabilitation. The changes in the SI-Sa (EO), SI-L (EO), total MBI, and several detailed MBI subscales in the MEP (+) group after rehabilitation were significantly larger than those in the MEP (-) group.
Our findings suggest that initial assessments of MEPs and SSEPs might be beneficial when predicting balance recovery in subacute hemiparetic stroke patients.
Citations
To investigate whether motor evoked potential (MEP) amplitude ratio measurements are sufficiently objective to assess functional activities of the extremities. We also delineated the distribution between the presence or absence of MEPs and the Medical Research Council (MRC) scale for muscle strength of the extremities.
We enrolled 183 patients with first-ever unilateral hemiplegia after stroke. The MEP parameters were amplitude ratio (amplitude of affected side/amplitude of unaffected side) recorded at the first dorsal interosseous (FDI) and tibialis anterior (TA) muscles. We performed frequency analyses using the MRC scale for muscle strength and the presence or absence of evoked MEPs. Change on the MRC scale, hand function tests (HFTs), and the Modified Barthel Index (MBI) subscore were compared between the evoked MEP and absent MEP groups using the independent t-test. Receiver operating characteristic curves were used to determine the optimal cutoff scores for the MEP amplitude ratio using the HFT results and MBI subscores. Correlations between the MEP amplitude ratio and the MRC scale, HFTs, and MBI subscore were analyzed.
About 10% of patients with MRC scale grades 0-2 showed evoked MEPs at the FDI muscle, and 4% of patients with MRC scale grades 3-5 did not show MEPs. About 18% of patients with MRC scale grades 0-2 showed evoked MEPs at the TA muscle, and 4% of patients with MRC scale grades 3-5 did not show MEPs. MEP amplitude increased with increasing MRC scale grade. The evoked MEP group had more significant changes on the MRC scale, HFT, and the climbing stair score on the MBI than those in the group without MEPs. Larger MEP amplitude ratios were observed in patients who had more difficulty with the HFTs and ambulation. The MEP amplitude ratio was significantly correlated with the MRC scale, HFT, and MBI subscore.
We conclude that the MEP amplitude ratio may be useful to predict functional status of the extremities in patients who suffered stroke.
Citations
Although spinal cord injury without radiographic abnormality (SCIWORA) literally refers to the specific type of spinal cord injury, however, some extents of spinal cord injuries can be detected by magnetic resonance imaging (MRI) in most of cases. We introduce an atypical case of spinal cord injury without radiologic abnormality. A 42-year-old male tetraplegic patient underwent MRI and computed tomography, and no specific lesions were found in any segments of the spinal cord. Moreover, the tetraplegic patient showed normal urodynamic function despite severe paralysis and absent somatosensory evoked potentials from the lower limbs.
Citations
To investigate the normal data of pain-related evoked potentials (PREP) elicited with a concentric surface electrode among normal, healthy adults and the relationship between PREP and pain intensity.
Sixty healthy volunteers (22 men and 38 women; aged 36.4±10.7 years; height, 165.4±7.8 cm) were enrolled. Routine nerve conduction study (NCS) was done to measure PREP following electrical stimulation of hands (C7 dermatome) and feet (L5 dermatome). Negative peak (N), positive peak (P) latencies, peak to peak (NP) amplitudes, conduction velocity (CV), and verbal rating scale (VRS) score were obtained. Linear regression analysis tested for significant relevance between variables of PREP and VRS score.
Normal NCS results were obtained in all subjects. N latency of hand PREP was 163.8 ±40.0 ms (right) and 161.0±39.9 ms (left). N latency of foot PREP was 178.0±43.9 ms (right), 180.4±43.4 ms (left). NP amplitude of hands was 20.6±10.6 µV (right) and 21.9±11.6 µV (left). NP amplitude of feet was 18.8±8.3 µV (right) and 19.0±8.4 µV (left). The calculated CV was 13.2±4.7 m/s and VRS score was 3.8±1.0. A highly significant positive correlation was evident between VRS score and NP amplitude (y=0.1069x+1.781, r=0.877, n=60, p<0.0001).
PREP among normal, healthy adults revealed a statistically significant correlation between PREP amplitude and VRS score.
Citations
To evaluate whether an initial complete impairment of spinal cord injury (SCI) contributes to the functional outcome prediction, we analyzed the relationship between the degree of complete impairment according to the American Spinal Injury Association impairment scale (AIS), the posterior tibial nerve somatosensory evoked potential (PTSEP) and the changes of functional indices.
Sixty subjects with SCI were studied who received rehabilitative management for over 2 months. The degree of completeness on basis of the initial AIS and PTSEP were evaluated at the beginning of rehabilitation. Following treatment, several functional indices, such as walking index for spinal cord injury version II (WISCI II), spinal cord independence measure version III (SCIM III), Berg Balance Scale (BBS), and Modified Barthel Index (MBI), were evaluated until the index score reached a plateau value.
The recovery efficiency of WISCI and BBS revealed a statistically significant difference between complete and incomplete impairments of initial AIS and PTSEP. The SCIM and MBI based analysis did not reveal any significant differences in terms of the degree of AIS and PTSEP completeness.
AIS and PTSEP were highly effective to evaluate the prognosis in post-acute phase SCI patients. BBS and WISCI might be better parameters than other functional indices for activities of daily living to predict the recovery of the walking ability in post-acute SCI.
Citations
To investigate neuroradiological and neurophysiological characteristics of patients with dyskinetic cerebral palsy (CP), by using magnetic resonance imaging (MRI), voxel-based morphometry (VBM), diffusion tensor tractography (DTT), and motor evoked potential (MEP).
Twenty-three patients with dyskinetic CP (13 males, 10 females; mean age 34 years, range 16-50 years) were participated in this study. Functional evaluation was assessed by the Gross Motor Functional Classification System (GMFCS) and Barry-Albright Dystonia Scale (BADS). Brain imaging was performed on 3.0 Tesla MRI, and volume change of the grey matter was assessed using VBM. The corticospinal tract (CST) and superior longitudinal fasciculus (SLF) were analyzed by DTT. MEPs were recorded in the first dorsal interossei, the biceps brachii and the deltoid muscles.
Mean BADS was 16.4±5.0 in ambulatory group (GMFCS levels I, II, and III; n=11) and 21.3±3.9 in non-ambulatory group (GMFCS levels IV and V; n=12). Twelve patients showed normal MRI findings, and eleven patients showed abnormal MRI findings (grade I, n=5; grade II, n=2; grade III, n=4). About half of patients with dyskinetic CP showed putamen and thalamus lesions on MRI. Mean BADS was 20.3±5.7 in normal MRI group and 17.5±4.0 in abnormal MRI group. VBM showed reduced volume of the hippocampus and parahippocampal gyrus. In DTT, no abnormality was observed in CST, but not in SLF. In MEPs, most patients showed normal central motor conduction time.
These results support that extrapyramidal tract, related with basal ganglia circuitry, may be responsible for the pathophysiology of dyskinetic CP rather than CST abnormality.
Citations
To investigate the somatosensory findings of pusher syndrome in stroke patients.
Twelve pusher patients and twelve non-pusher patients were enrolled in this study. Inclusion criteria were unilateral stroke, sufficient cognitive abilities to understand and follow instructions, and no visual problem. Patients were evaluated for pusher syndrome using a standardized scale for contraversive pushing. Somatosensory finding was assessed by the Cumulative Somatosensory Impairment Index (CSII) and somatosensory evoked potentials (SEPs) at 1 and 14 weeks after the stroke onset. Data of SEPs with median and tibial nerve stimulation were classified into the normal, abnormal, and no response group.
In the baseline characteristics (sex, lesion character, and side) of both groups, significant differences were not found. The score of CSII decreased in both groups at 14 weeks (p<0.05), but there were no significant differences in the CSII scores between the two groups at 1 and 14 weeks. There were no significant differences in SEPs between the two groups at 1 and 14 weeks after the stroke onset.
It appears that somatosensory input plays a relatively minor role in pusher syndrome. Further study will be required to reveal the mechanism of pusher syndrome.
Citations
To investigate the effectiveness of the daily living activity and motor evoked potential (MEP) in the subacute stroke patients.
Nineteen subjects with subacute ischaemic/hemorrhagic stroke developed in the last three months were enrolled, and MEP was measured with transcranial magnetic stimulation. Functional Independence Measure (FIM) score were evaluated in both groups before and 4 weeks after comprehensive rehabilitative management. According to the presence of MEP response in the affected hemisphere, subjects were divided into MEP positive and negative group.
There was no significant difference between the two groups in age, sex, and post-onset duration. Four weeks later, the change in total FIM and self-care score improved significantly in the MEP-positive group, when compared to the MEP-negative group (p<0.05). However, cognitive improvement had no relationship with MEP responsiveness.
We concluded that initial measurement of MEP is a useful assessment tool in predicting functional outcome of subacute stroke patients.
Citations