To evaluate the clinical features that could serve as predictive factors for improvement in gait speed after robotic treatment.
A total of 29 patients with motor incomplete spinal cord injury received 4-week robot-assisted gait training (RAGT) on the Lokomat (Hocoma AG, Volketswil, Switzerland) for 30 minutes, once a day, 5 times a week, for a total of 20 sessions. All subjects were evaluated for general characteristics, the 10-Meter Walk Test (10MWT), the Lower Extremity Motor Score (LEMS), the Functional Ambulatory Category (FAC), the Walking Index for Spinal Cord Injury version II (WISCI-II), the Berg Balance Scale (BBS), and the Spinal Cord Independence Measure version III (SCIM-III) every 0, and 4 weeks. After all the interventions, subjects were stratified using the 10MWT score at 4 weeks into improved group and non-improved group for statistical analysis.
The improved group had younger age and shorter disease duration than the non-improved group. All subjects with the American Spinal Injury Association Impairment Scale level C (AIS-C) tetraplegia belonged to the non-improved group, while most subjects with AIS-C paraplegia, AIS-D tetraplegia, and AIS-D paraplegia belonged to the improved group. The improved group showed greater baseline lower extremity strength, balance, and daily living function than the non-improved group.
Assessment of SCIM-III, BBS, and trunk control, in addition to LEMS, have potential for predicting the effects of robotic treatment in patients with motor incomplete spinal cord injury.
Citations
To identify the clinical characteristics of proper robot-assisted gait training group using exoskeletal locomotor devices in non-ambulatory subacute stroke patients.
A total of 38 stroke patients were enrolled in a 4-week robotic training protocol (2 sessions/day, 5 times/week). All subjects were evaluated for their general characteristics, Functional Ambulatory Classification (FAC), Fugl-Meyer Scale (FMS), Berg Balance Scale (BBS), Modified Rankin Scale (MRS), Modified Barthel Index (MBI), and Mini-Mental Status Examination (MMSE) at 0, 2, and 4 weeks. Statistical analysis were performed to determine significant clinical characteristics for improvement of gait function after robot-assisted gait training.
Paired t-test showed that all functional parameters except MMSE were improved significantly (p<0.05). The duration of disease and baseline BBS score were significantly (p<0.05) correlated with FAC score in multiple regression models. Receiver operating characteristic (ROC) curve showed that a baseline BBS score of '9' was a cutoff value (AUC, 0.966; sensitivity, 91%–100%; specificity, 85%). By repeated-measures ANOVA, the differences in improved walking ability according to time were significant between group of patients who had baseline BBS score of '9' and those who did not have baseline BBS score of '9'
Our results showed that a baseline BBS score above '9' and a short duration of disease were highly correlated with improved walking ability after robot-assisted gait training. Therefore, baseline BBS and duration of disease should be considered clinically for gaining walking ability in robot-assisted training group.
Citations