To identify the potential predictors of ambulatory function in subacute stroke patients, and to determine the contributing factors according to gait severity.
Fifty-three subacute stroke patents were enrolled. Ambulatory function was assessed by gait speed and endurance. Balance function was evaluated by the Berg Balance Scale score (BBS) and the Timed Up and Go test (TUG). The isometric muscular strengths of bilateral knee extensors and flexors were measured using an isokinetic dynamometer. Cardiovascular fitness was evaluated using an expired gas analyzer. Participants were assigned into the household ambulator group (<0.4 m/s) or the community ambulator group (≥0.4 m/s) based on gait severity.
In the linear regression analyses of all patients, paretic knee isometric extensor strength (p=0.007) and BBS (p<0.001) were independent predictors of gait endurance (R2=0.668). TUG (p<0.001) and BBS (p=0.037) were independent predictors of gait speed (R2=0.671). Paretic isometric extensor strength was a predictor of gait endurance (R2=0.340, p=0.008). TUG was a predictor of gait speed (R2=0.404, p<0.001) in the household ambulator group, whereas BBS was a predictive factor of gait endurance (R2=0.598, p=0.008) and speed (R2=0.713, p=0.006). TUG was a predictor of gait speed (R2=0.713, p=0.004) in the community ambulator group.
Our results reveal that balance function and knee extensor isometric strength were strong predictors of ambulatory function in subacute stroke patients. However, they work differently according to gait severity. Therefore, a comprehensive functional assessment and a different therapeutic approach should be provided depending on gait severity in subacute stroke patients.
Citations
To determine if assistive ergometer training can improve the functional ability and aerobic capacity of subacute stroke patients and if functional electrical stimulation (FES) of the paretic leg during ergometer cycling has additional effects.
Sixteen subacute stroke patents were randomly assigned to the FES group (n=8) or the control group (n=8). All patients underwent assistive ergometer training for 30 minutes (five times per week for 4 weeks). The electrical stimulation group received FES of the paretic lower limb muscles during assistive ergometer training. The six-minute walk test (6MWT), Berg Balance Scale (BBS), and the Korean version of Modified Barthel Index (K-MBI) were evaluated at the beginning and end of treatment. Peak oxygen consumption (Vo2peak), metabolic equivalent (MET), resting and maximal heart rate, resting and maximal blood pressure, maximal rate pressure product, submaximal rate pressure product, submaximal rate of perceived exertion, exercise duration, respiratory exchange ratio, and estimated anaerobic threshold (AT) were determined with the exercise tolerance test before and after treatment.
At 4 weeks after treatment, the FES assistive ergometer training group showed significant improvements in 6MWT (p=0.01), BBS (p=0.01), K-MBI (p=0.01), Vo2peak (p=0.02), MET (p=0.02), and estimated AT (p=0.02). The control group showed improvements in only BBS (p=0.01) and K-MBI (p=0.02). However, there was no significant difference in exercise capacity and functional ability between the two groups.
This study demonstrated that ergometer training for 4 weeks improved the functional ability of subacute stroke patients. In addition, aerobic capacity was improved after assisted ergometer training with a FES only.
Citations