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Objective  To present new classification methods of knee osteoarthritis (KOA) using machine learning and 
compare its performance with conventional statistical methods as classification techniques using machine 
learning have recently been developed.
Methods  A total of 84 KOA patients and 97 normal participants were recruited. KOA patients were clustered into 
three groups according to the Kellgren-Lawrence (K-L) grading system. All subjects completed gait trials under the 
same experimental conditions. Machine learning-based classification using the support vector machine (SVM) 
classifier was performed to classify KOA patients and the severity of KOA. Logistic regression analysis was also 
performed to compare the results in classifying KOA patients with machine learning method.
Results  In the classification between KOA patients and normal subjects, the accuracy of classification was higher 
in machine learning method than in logistic regression analysis. In the classification of KOA severity, accuracy was 
enhanced through the feature selection process in the machine learning method. The most significant gait feature 
for classification was flexion and extension of the knee in the swing phase in the machine learning method.
Conclusion  The machine learning method is thought to be a new approach to complement conventional logistic 
regression analysis in the classification of KOA patients. It can be clinically used for diagnosis and gait correction 
of KOA patients.
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INTRODUCTION

Osteoarthritis (OA), which is defined as the degenera-
tion of joint cartilage and the underlying bone, is the 
most common joint disease. It can also be described 
by joint symptoms including pain and stiffness and/or 
structural pathology affecting many joint tissues [1]. It is 
clinically known that the knee joint is the most common 
site afflicted by OA despite the potential for any joint 
involvement [2]. Knee osteoarthritis (KOA) is the most 
common source of pain, disability, and functional loss in 
adults, consequently leading to abnormal gait patterns. 
As KOA seems to be much more prevalent today due to 
the increased life expectancy and body mass index (BMI) 
in modern times, early intervention is required through 
accurate early diagnosis of KOA [3].

There are various tools to classify KOA including ra-
diological, arthroscopic, and functional scales [4]. The 
mainstay for diagnosing KOA is plain radiography and 
the Kellgren-Lawrence (K-L) grading system, which as-
signs a grade from 0 (no presence of OA) to 4 (severe OA), 
is the most commonly used [5].

Gait analysis systems can provide information on the 
biomechanical response of the human body to muscu-
loskeletal disorders like KOA with non-invasive meth-
ods [6]. Some studies investigated the kinematic changes 
during the gait cycle and reported decreased knee joint 
motion during flexion, a decreased knee flexion angle 
during the stance phase, and an increased knee flexion 
angle at heel strike [7-10]. Others showed kinetic changes 
in KOA patients including a reduced internal knee ex-
tensor moment to reduce the loading on the knee joint, 
increased first peak knee external adduction moment, 
and initial contact with the ground with a more extended 
knee [10,11].

Previous studies on gait analysis mainly used spatio-

temporal parameters such as step length and gait speed; 
kinematic parameters such as joint angle; and kinetic 
parameters such as ground reaction force and moment. 
In terms of the statistical techniques used in the study, 
conventional statistics such as a t-test or Mann-Whitney 
U test were used [10,12]. In statistically more precise 
studies, principle component analysis or multiple regres-
sion analysis were used [6,13,14]. 

We can obtain dynamic and segmented gait data, which 
is difficult to obtain through plain radiography, by gait 
analysis. When this is applied to a clinical trial, there is 
the advantage that rehabilitative interventions for the 
gait patterns of KOA patients can be performed together. 
However, a vast amount of gait data from gait analysis 
still remains limited for clinical use, and machine learn-
ing techniques have been introduced to compensate for 
this limitation and improve the classification accuracy.

Recently, there have been many attempts to classify 
and distinguish abnormal pathologic gait patterns via 
combining machine learning-based techniques with 
gait analysis system in the medical field [15-18]. When 
analyzing gait patterns through machine learning-based 
techniques, a machine classifier is necessary and the 
support vector machine (SVM) has been established as a 
successful technique for pattern recognition [19].

Therefore, this study aimed to present anew classifica-
tion method of KOA patients using machine learning and 
evaluate the accuracy of classification by comparing it to 
conventional statistical analysis methods.

MATERIALS AND METHODS

Subjects
This study was performed on age-matched KOA pa-

tients (n=84) and normal participants (n=97). KOA was 
diagnosed through plain radiography and graded ac-

Table 1. Characteristics of patients with knee osteoarthritis and control subjects

Control group (n=97)
Osteoarthritis group

Mild (n=28) Moderate (n=31) Severe (n=25)
Age (yr) 62.1±7.7 64.7±7.5 69.3±9.5 71.1±6.4

Height (cm) 158.3±12.2 157.5±7.0 159.3±7.2 159.5±9.4

Weight (kg) 59.40±9.37 61.10±10.30 62.20±10.90 60.50±9.50

BMI (kg/m2) 22.75±3.70 24.50±0.70 24.30±8.30 23.10±2.70

Values are presented as mean±standard deviation.
BMI, body mass index.
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cording to the K-L grading system. Subjects without knee 
pain, joint stiffness, gait problems, or a history of being 
diagnosed with KOA were considered normal partici-
pants. Before all subjects decided to participate in this 
study, the purpose and methods of the study was fully 
explained to them. Additionally, participants provided 
informed consent.

Prior to beginning the study, we asked subjects to 
maintain their usual lifestyle. In preparation for any 
problems, we contacted them over the phone during the 
experiment to check their condition or whether they had 
any health problems. When subjects visited our institu-
tion, they provided their own elementary demographic 
information including sex and age, and KOA patients 
were assessed for the severity of their disease through 
plain radiography. All demographic characteristics in-
cluding age, height, weight, and BMI are described as the 
mean values in both the control and KOA groups (Table 
1). Also, KOA patients were clustered into three groups 
according to the K-L grade of their affected limb via plain 
radiography: mild, as definite osteophyte and possible 
joint space narrowing on the anteroposterior weight-
bearing radiograph; moderate, as multiple osteophytes, 
definite joint space narrowing, sclerosis, and possible 
bony deformation; and severe, as large osteophytes, 
marked joint space narrowing, severe sclerosis and defi-
nite bony deformation. The affected limb was defined as 
a more symptomatic side in bilateral KOA patients and 
an ipsilateral side in unilateral KOA patients. This study 
was approved by Hanyang University Guri Hospital Insti-
tutional Review Board (No. 2016-06-014).

Gait analysis and experimental equipment
All subjects completed ten walking trials with a 10-m 

gait course. Gait trials were done in a quiet environment 
with proper speed for participants. We subdivided each 
gait cycle to easily understand and utilize it for research. 
Gait cycles were divided into the stance phase (SP) and 
swing phase (SW), and then, the SP into the initial double 
support phase (IDS), single support phase (SS), and ter-
minal double support phase (TDS). Three-dimensional 
(3D) kinematic data from the hip, knee, and ankle joints 
were also gathered. All subjects performed all compo-
nents of the experiments in the same environments and 
conditions. 

In this study, a major piece of equipment for analyzing 
gait patterns was the inertial measurement unit (IMU)-
based system (Human Track; RBiotech Co. Ltd., Seoul, 
Korea). Its main components consisted of a gyroscope, 
magnetic sensor, and accelerometer. For measuring 
angular velocity and proper acceleration, the triaxial 
gyroscope and accelerometer were used, respectively. 
We obtained information on the azimuth angle through 
a magnetic sensor. The 3D motion information was 
obtained using the gyroscope, accelerometer, and mag-
netic sensor in all three axes. The wearable IMU used in 
this study was wireless and attached to the lower abdo-
men, both sides of mid-thigh level, tibial shaft, and feet 
dorsum. According to Aminian et al.  [20], gait analysis 
using a gyroscope was able to effectively estimate spatio-
temporal parameters. In a previous study, the validity of 
applying the IMU system consisting of a gyroscope, ac-
celerometer, and magnetometer to gait analysis was also 
verified [21]. Because temporal gait parameters are used 
to compute higher-level gait features and the accuracy 
of spatiotemporal parameter measurement using IMU 
was evaluated as appropriate, our study could also mea-
sure the gait cycle and divide it into four phases using 

A B C

Fig. 1. A hardware of the gait analysis system consisting of PC and wireless IMU sensors (A), and gait trial of knee os-
teoarthritis patient (B) and normal subject (C). IMU, inertial measurement unit.
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IMU [22].
The hardware of the gait analysis system used in this 

study consisted of PC and wireless IMU sensors (Fig. 1). 
Using a Bluetooth module with 100 Hz serial peripheral 
interface (SPI) communication, the PC received signals 
from the sensors without direct connection.

Extraction of kinematic parameters and segmentation 
of the gait cycle

Utilizing the motion information gathered from all sen-
sors attached to the patients, the 3D joint angles were 
calibrated. In this study, the gait data on both sides of 
the limbs were averaged based on the gait cycle. This is 
because we believed that if we analyzed the left and right 
sides separately, the number of cases would be too large 
to lead to a meaningful performance of the machine 
learning method. Based on the data, we were able to 
show how the joint angle changed throughout the whole 
gait cycle (Fig. 2). And then, 72 gait features could be 
listed to classify KOA patients, which described the kine-
matic components of the gait patterns (Table 2). Through 
the process of subdividing joint angles during the gait 

cycle, abnormal gait patterns and their cause could be 
explained.

Machine learning application for the classification of 
knee osteoarthritis

To classify KOA patients and severity, a machine learn-
ing algorithm was used in this study. The SVM is a super-
vised learning model with associated learning algorithms 
used to find a support vector. A support vector is an opti-
mal hyperplane that separates two data classes. The SVM 
figures out the hyperplane with a maximum-margin via 
process finding two data in two groups with the shortest 
distance. It is a brief overview of the SVM (Fig. 3), and if 
it cannot draw a dividing line in two-dimensional space, 
the kernel function can be applied in a higher dimen-
sional space to classify data.

With the z-scores calculated, all gait features were nor-
malized and then applied to the classifiers. In this study, 
a 5-fold cross-validation scheme was performed to assess 
the possibility of generalization of the classifier, and the 
results were attained through the accuracy result. After 
splitting data set into five subsets, one subset was used 
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Fig. 2. The gait waveform data of one representative normal subject’s lower limb was divided and expressed by each 
segmented gait phase.
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as a test set and the remaining four subsets were used as 
training sets.

From all gait analyses, we collected the feature set data 
and operated it using the MATLAB Classification Learner 
Tool. Using the SVM classifier, we calculated the distance 

between data from KOA patients and normal subjects 
and generated a model capable of classifying each cluster 
by distance. A flow chart of our classification algorithm is 
shown in Fig. 4. By using this algorithm, we generated a 
model that can classify KOA patients through a machine 

Table 2. Kinematic gait parameters used to classify osteoarthritis patients

Feature ID Feature name (left limb) Feature ID Feature name (right limb)
  1 Hip flexion extension in IDS 37 Hip flexion extension in IDS

  2 Hip flexion extension in SS 38 Hip flexion extension in SS

  3 Hip flexion extension in TDS 39 Hip flexion extension in TDS

  4 Hip flexion extension in SW 40 Hip flexion extension in SW

  5 Hip adduction abduction in IDS 41 Hip adduction abduction in IDS

  6 Hip adduction abduction in SS 42 Hip adduction abduction in SS

  7 Hip adduction abduction in in TDS 43 Hip adduction abduction in in TDS

  8 Hip adduction abduction in SW 44 Hip adduction abduction in SW

  9 Hip internal external rotation in IDS 45 Hip internal external rotation in IDS

10 Hip internal external rotation in SS 46 Hip internal external rotation in SS

11 Hip internal external rotation in in TDS 47 Hip internal external rotation in in TDS

12 Hip internal external rotation in SW 48 Hip internal external rotation in SW

13 Knee flexion extension in IDS 49 Knee flexion extension in IDS

14 Knee flexion extension in SS 50 Knee flexion extension in SS

15 Knee flexion extension in TDS 51 Knee flexion extension in TDS

16 Knee flexion extension in SW 52 Knee flexion extension in SW

17 Knee varus valgus in IDS 53 Knee varus valgus in IDS

18 Knee varus valgus in SS 54 Knee varus valgus in SS

19 Knee varus valgus in in TDS 55 Knee varus valgus in in TDS

20 Knee varus valgus in SW 56 Knee varus valgus in SW

21 Knee internal external rotation in IDS 57 Knee internal external rotation in IDS

22 Knee internal external rotation in SS 58 Knee internal external rotation in SS

23 Knee internal external rotation in in TDS 59 Knee internal external rotation in in TDS

24 Knee internal external rotation in SW 60 Knee internal external rotation in SW

25 Ankle dorsiflexion plantarflexion in IDS 61 Ankle dorsiflexion plantarflexion in IDS

26 Ankle dorsiflexion plantarflexion in SS 62 Ankle dorsiflexion plantarflexion in SS

27 Ankle dorsiflexion plantarflexion in TDS 63 Ankle dorsiflexion plantarflexion in TDS

28 Ankle dorsiflexion plantarflexion in SW 64 Ankle dorsiflexion plantarflexion in SW

29 Ankle inversion eversion in IDS 65 Ankle inversion eversion in IDS

30 Ankle inversion eversion in SS 66 Ankle inversion eversion in SS

31 Ankle inversion eversion in in TDS 67 Ankle inversion eversion in in TDS

32 Ankle inversion eversion in SW 68 Ankle inversion eversion in SW

33 Ankle internal external rotation in IDS 69 Ankle internal external rotation in IDS

34 Ankle internal external rotation in SS 70 Ankle internal external rotation in SS

35 Ankle internal external rotation in in TDS 71 Ankle internal external rotation in in TDS

36 Ankle internal external rotation in SW 72 Ankle internal external rotation in SW

IDS, initial double support phase; SS, single support phase; TDS, terminal double support phase; SW, swing phase.
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learning technique. For successful feature selection that 
is notably sensitive to feature interactions, the ReliefF 
algorithm was used. A feature score for each feature was 
calculated and applied to find the highest scoring fea-
tures for feature selection. A flow diagram of this algo-
rithm is shown in Fig. 5.

Statistical analysis
We also performed a logistic regression analysis to com-

pare the results of conventional medical statistical meth-

ods and machine learning in classifying KOA patients 
and normal subjects. Age, gender, height, weight, dura-
tion of one gait cycle, gait speed, cadence, and the maxi-
mum knee flexion angle were used as covariates and the 
presence of KOA (KOA patients group vs. normal subjects 
group) was used as dependent variable in the logistic 
regression model. Odds ratios (ORs) and 95% confidence 
intervals (CIs) were used to show the associations in the 
logistic regression analysis, and Nagelkerke’s R2 statistic 
was calculated to determine the variance in classification 
of KOA patients and normal subjects. Statistical analysis 
was performed with SPSS Statistics software (IBM SPSS, 
Armonk, NY, USA).First class

Second class

Margin

Support vector

Fig. 3. Conceptualization of the support vector machine 
(SVM). The purpose of the SVM is to identify a hyper-
plane that precisely divides the data points. A hyperplane 
is a decision boundary that segregates data into classes. 
The data points close to the hyperplane are support vec-
tors, and these affect the position of the hyperplane.
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Fig. 4. Flow diagram for the classification algorithm of 
knee osteoarthritis patients. SVM, support vector ma-
chine.
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Fig. 5. Flow diagram of feature selection for improving the SVM classification of knee osteoarthritis severity. SVM, sup-
port vector machine; OA, osteoarthritis.
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RESULTS

Primarily, the result values of basic gait parameters for 
each group are shown in Supplementary Table S1. The 
mean and standard deviation values for the range of mo-
tion (ROM) of the aforementioned 72 gait features are 
shown in Supplementary Table S2. All subjects were di-
vided into two groups (KOA and control) based on the 72 
gait features. We used the MATLAB Classification Learner 
to assess the accuracy of the SVM classifier, which was 
92.8% (Table 3). Then, machine learning-based classifi-
cation through the SVM classifier was shown as a scatter 
plot with two-dimensions. We constructed a 2×2 confu-
sion matrix with actual and predicted values, and visual-
ized the performance of machine learning-based classifi-
cation (Fig. 6).

We also classified the severity of KOA patients by the 72 
gait features. Calculated in the same way as mentioned 
above, the accuracy of the SVM classifier was 81.2%. To 
know how the number of the features affects our classifi-
cation, a forward feature selection algorithm was used in 
this study. By using the ReliefF algorithm, we found the 
best combination of kinematic features among all 72 fea-

tures. As a result, we found the 10 features which showed 
the highest accuracy of 85.6% and were superior to clas-
sification with all 72 features (Table 4).

As the same as above, we displayed machine learning-
based classification through an SVM classifier in scatter 
plot form with two-dimensions. We also constructed a 
4×4 confusion matrix with actual and predicted values, 
and visualized the performance of machine learning-
based classification (Fig. 7).

Regarding the feature selection process using the Re-
liefF algorithm, Fig. 8 shows the accuracy of each feature 
set and the highest accuracy of classification was found to 
be 85.6% when optimal 10 features were used. It is note-
worthy that classifiers trained with a suitable number of 
features showed better performance in classification.

In addition, among the 72 gait features representing 
the kinematic data of subjects, the three most critical 
features in abnormal gait were listed by the level of their 
contributions. When classifying KOA patients and normal 

Table 3. Accuracy results in classification of knee osteo-
arthritis and normal subjects using SVM

Classifier Accuracy (%) Specificity (%) Sensitivity (%)
SVM 92.8 94.9 91.2

SVM, support vector machine.

Table 4. Accuracy results in classification of severity of 
knee osteoarthritis using SVM and SVM with feature se-
lection algorithm classifier

Classifier
Accuracy 

(%)
PPV 
(%)

Sensitivity 
(%)

SVM 81.2 79.7 70.4

SVM with feature  
selection algorithm

85.6 84.7 81.7

SVM, support vector machine; PPV, positive predictive 
value.
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subjects, the primary contributions were left knee flexion 
and extension in the SW, secondary contributions were 
right knee flexion and extension in SW, and the tertiary 
contributions were ankle dorsiflexion and plantarflexion 
in the SS. When classifying mild, moderate, and severe 
KOA patients and normal subjects, the primary and sec-
ondary contributions were the same as those from the 
previous classification, and the tertiary contributions 
were internal and external knee rotation in the SS.

In the classification of KOA severity in this study, Fig. 9 
presents the most crucial features in the sagittal plane of 
the knee.

In the logistic regression analysis for the classifica-
tion of KOA patients and normal subjects, the final 
model included the maximum knee flexion angle of the 
right (OR=1.106; 95% CI, 1.038–1.179; p=0.002) and left 

(OR=1.110; 95% CI, 1.039–1.186; p=0.002) knee and ca-
dence (OR=1.076; 95% CI, 1.017–1.138; p=0.010). The final 
logistic regression model explained 58.0% (Nagelkerke’s 
R2) of the variance in the classification of KOA patients 
and normal subjects and correctly classified 83.9% of 
cases (Table 5).

DISCUSSION

Today, as physicians have begun to recognize that KOA 
is caused by various factors including genetic, inflamma-
tory, and mechanical processes, KOA, to a certain extent, 
is thought to be a preventable disease. Therefore, early 
intervention is required through accurate early diagnosis 
of KOA.
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The severity of KOA can be assessed by radiologically 
(K-L grading system), arthroscopically (Collins system), 
and functionally (Western Ontario and McMaster Univer-
sities Osteoarthritis index) [23,24]. 

The most widely used method of radiologic grading and 
KOA identification is described by Kellgren and Lawrence 
as the K-L grading system [5,23]. Although it has been 
used for decades, debates regarding its limitations are 
ongoing. The K-L grading system has difficulty in evalu-
ating the progress of disease and can be harmful due to 
the repetitive radiation exposure. Since many studies 
have adapted this classification in various ways, it can 
also be inconsistent with its original description [5,25]. 
Simultaneously, some previous studies have criticized 
the consistency of the pre-standardized classification of 
KOA. Schiphof et al. [26] performed an epidemiological 
cohort study from 1966 to 2005 to summarize the dif-
ferent descriptions of KOA classifications from previous 
studies. Remarkably, disagreement on the definition and 
grading system of KOA between some major OA cohort 
studies was shown despite their accordance with follow-
ing the original K-L grading system. Some studies even 
had inconsistencies within themselves.

In the past few decades, the technology related to hu-
man motion analysis has shown remarkable advance-
ments and as a result, our understanding of human body 
motion and the accuracy of gait analysis have significant-
ly improved. Consequently, gait analysis can be utilized 
in the medical field and considered a clinically useful 
technique.

Recently, the effort to use gait analysis as a methodol-
ogy for KOA research and actual clinical application has 
increased significantly [15]. Many studies on KOA using 
gait analysis investigated representative gait patterns of 
KOA patients and reported differences in gait parameters 

compared to normal subjects [10,11,27-29].
Mills et al.  [30] conducted a systematic review and 

meta-analysis on the biomechanical deviations of KOA 
patients. It revealed spatiotemporal parameters as a 
great scale to determine the severity of KOA. Astephen 
et al. [31] implied that as the disease progressed, the role 
which the biomechanical factors played depended on the 
different stages of severity. Previous studies have reported 
the kinetics and kinematics for different stages of KOA. In 
terms of kinetics, Mundermann et al. [10] reported a suf-
ficient hip adduction moment and reduced second peak 
knee adduction moment in less severe KOA patients, 
and reduced hip adduction moment and increased first 
peak knee adduction moment in more severe KOA pa-
tients considering the gait compensatory mechanism. 
Similarly, Chang et al.  [32] reported that a greater hip 
abduction moment occurring during gait reduced the 
progression of ipsilateral medial KOA in relatively less 
advanced KOA patients. Meissier et al. [33] and Al-Zah-
rani and Bakheit [12] conducted studies in more severe 
KOA patients and reported significantly reduced ROM in 
the hip, knee, and ankle joints. They reported that these 
kinematic gait abnormalities observed in severe KOA 
patients were due to the instability of the knee joint, and 
rehabilitative interventions that improved knee stability 
enhanced the walking ability of severe KOA patients. KOA 
is a joint disease, which inevitably affects all lower limb 
joints including both sides of the hip, knee, and ankle. 
In addition, through analysis of the gait of KOA patients 
in a number of previous studies, the most significantly 
changed kinematic parameter was determined to be the 
knee flexion ROM [6,34]. Therefore, in this study, we pro-
ceeded using ROM data in the kinematic parameters.

However, previously used camera-based gait analysis 
cannot be easily performed due to challenges such as ap-

Table 5. Logistic regression analysis with gait features and clinical factors

Regression coefficient Standard error p-value OR
95% CI of OR

Lower Upper
Maximum flexion angle

   Right knee 0.101 0.032 0.002* 1.106 1.038 1.179

   Left knee 0.104 0.034 0.002* 1.110 1.039 1.186

Cadence 0.073 0.029 0.010* 1.076 1.017 1.138

Constant -17.911 3.626 0.000* 0.000 - -

OR, odds ratio; CI, confidence interval.
*p<0.05.
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propriate space, costs, and time required for testing [35]. 
It also requires complicated image processing and ap-
propriate lighting conditions to operate normally [36]. To 
compensate for the limitations shown in camera-based 
methods, this study used a wireless form of wearable 
IMU. The strength of wearable IMU systems is that they 
are radiation-free, small-sized, and cost effective, and it 
made them to be widely used. Beange et al. [37] reported 
that the IMU system not only had a higher accuracy com-
pared to Vicon but also was sufficient to be used in clini-
cal settings.

Today, almost every part of our daily lives is affected by 
machine learning and big data. In general, clinicians can 
feel unfamiliar with big data and machine learning. How-
ever, machine learning is a similar method in principle to 
traditional statistics. Machine learning has emerged as an 
important and powerful technique in the medical field. 
By applying machine learning to clinical settings, we can 
expect advances at the level of global health. By devel-
oping a prognostic algorithm, better assessments can 
improve the care for patients with various diseases and 
thereby improve the prognosis. A large part of the role of 
anatomical pathologists and radiologists will be replaced 
by machine learning. Finally, through machine learning, 
diagnosis will become more consistent and accurate [38].

Shetty et al. [17] reported the successful classification 
of Parkinson’s disease from amyotrophic lateral sclerosis, 
Huntington’s disease, and healthy controls using a ma-
chine learning method. This study used a Gaussian radial 
basis function kernel based SVM classifier and achieved 
an overall classification accuracy of 83.33% after feature 
vector selection. Mezghani et al. [18] classified asymp-
tomatic and KOA subjects. They analyzed gait patterns 
by measuring the 3D ground reaction force, and the data 
was classified using the nearest neighbor rule. Finally, 
with the wavelet decomposition using force components 
in the frontal and transverse planes, the accuracy of clas-
sification between the two groups was 94%.

In this study, using all 72 gait features for machine 
learning-based classification, the results revealed a clas-
sification accuracy of 92.8% between the KOA and control 
groups, and 81.2% among three groups according to the 
severity of KOA. Then, the process of feature selection 
needed to classify KOA patients according to the severity 
was performed by ReliefF algorithm, and we found that 
not all features were necessary to classify the severity 

of KOA. Consequently, when 10 optimal features were 
used in classification, the accuracy showed the highest 
value of 85.6%. These results suggest that the process of 
feature selection increased efficiency in data processing 
and the accuracy of classification by excluding unneces-
sary gait features. Therefore, the eventual reduction in 
the number of used features is helpful for optimizing 
machine learning algorithms and helping clinicians to 
easily understand the process. This improvement of ac-
curacy via feature selection was supported by previous 
studies about classification of scoliosis and diagnosis of 
glaucoma [16,39].

From the gait analysis in this study, the data on kine-
matic and spatiotemporal parameters were gathered 
from the sensors attached to the patients. Based on the 
data, dynamic changes of the joint angle according to 
the four segmented stages (IDS, SS, TDS, and SW) are de-
scribed in Fig. 2.

As previous studies that incorporated gait analysis into 
KOA assessment have mainly used conventional statis-
tics such as t-tests and regression analyses [40], we also 
conducted a logistic regression analysis as a conventional 
medical statistical method to compare the results with 
the machine learning-based method for the classification 
of KOA patients and normal subjects. From the logistic 
regression analysis using both the demographic charac-
teristics and spatiotemporal parameters, we found the 
final model with the maximum knee flexion angle and 
cadence. This final logistic regression model correctly 
classified 83.9% of cases, which was lower than the ma-
chine learning-based method which correctly classified 
92.8% of cases. Even though the independent variables 
used in the two methods were not identical to each other, 
we could acquire the additional evidence of methodolog-
ical validity in the machine learning-based classification 
method.

There are several limitations in our study. First, al-
though gait speed is known to affect gait kinematics, we 
conducted this study without controlling for gait speed. 
We thought that instead of controlling gait speed by per-
forming gait trials on a treadmill, it was more important 
to analyze the subjects’ gait patterns in their daily lives 
under the same experimental conditions. Second, this 
study failed to control for the effects of pain which are 
one of the most common symptoms of KOA patients and 
can also affect the kinematics of gait. Third, we did not 
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perform radiographic evaluation of the normal control 
group because of the risk of radiation exposure. Thus, 
we could not compare radiologic findings between KOA 
patients and normal subjects. Fourth, in this study, we 
conducted the study based only on the K-L grade of the 
affected limb which was defined as the more symptom-
atic side, and patients with symmetric severity of KOA 
were excluded from the study. In the future, it would be a 
good idea to collect enough study subjects and conduct 
research on patients with symmetric severity of KOA. 
Fifth, although we were able to achieve considerable reli-
ability in the machine learning-based classification of 
KOA patients, research on either modification of abnor-
mal gait patterns or future treatment was not included in 
this study. Therefore, the study on these aspects needs to 
be conducted afterwards.

In conclusion, this study proposed a new KOA classifi-
cation method using machine learning for KOA patients 
and normal subjects and compared its performance with 
the conventional statistical processing technique. We rec-
ognized that the machine learning-based method could 
complement conventional logistic regression analysis in 
the classification of KOA patients and normal subjects. 
Furthermore, the machine learning technique is thought 
to be able to overcome a clinician’s lack of access due 
to limitations on the complexity and massive amount of 
data presented in gait analysis. In addition, we expect 
that the results of this study can be used for the diagnosis 
of KOA patients and rehabilitative intervention through 
gait correction. 
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